This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before making your selection. The due time is Central time.

PLEASE remember to bubble in your name, student ID number, and version number on the scantron!

Msci 15 0906HS
15:09, general, multiple choice, < 1 min, fixed.

001
What would be the signs of ΔH and ΔS, for the reaction

$$\text{CH}_4(g) \rightarrow \text{CH}_3(g) + \text{H(g)}?$$

1. Both positive. correct
2. $\Delta H = +, \Delta S = -$
3. $\Delta H = -, \Delta S = +$
4. Both negative.
5. $\Delta H = +, \Delta S = 0$
6. $\Delta H = -, \Delta S = 0$
7. $\Delta H = 0, \Delta S = +$
8. $\Delta H = 0, \Delta S = -$
9. Both 0.
10. Impossible to tell from the information given.

Explanation:

$$\Delta H^0_{\text{rxn}} = \sum \text{B.E.}_{\text{reactants}} - \sum \text{B.E.}_{\text{products}}$$

$= \left[4 (\text{C} - \text{H})\right] - \left[3 (\text{C} - \text{H})\right]$

$= (\text{C} - \text{H})$

$= 414 \text{ kJ/mol}$

ΔH is positive (endothermic, net bond breaking).

ΔS is also positive because the randomness of the system has increased. (1 mole of gaseous reactants forms 2 moles of gaseous products.)

Msci 15 0402
15:10, general, multiple choice, > 1 min, fixed.

002
A 0.10 g piece of chocolate cake is combusted with oxygen in a bomb calorimeter. The temperature of 4000 g of H$_2$O in the calorimeter is raised by 0.32 K. (The specific heat of the water is 1.0 cal/g·K and the heat of vaporization of water is 540 cal/g.)

What is ΔE for the combustion of chocolate cake? Assume no heat is absorbed by the calorimeter.

1. -3900 kcal/g
2. -460 kcal/g
3. -12.8 kcal/g correct
4. -532 kcal/g
5. -13.3 kcal/g

Explanation:

The amount of heat responsible for the increase in water temperature for 4000 g of water is

$$q = \frac{1 \text{ cal}}{\text{g} \cdot \text{K}} \cdot (4000 \text{ g})(0.32 \text{ K}) = 1280 \text{ cal}$$

The amount of heat released by the reaction is thus 1280 cal. There were 0.10 g of cake, so

$$\frac{-1280 \text{ cal}}{0.10 \text{ g}} \cdot \frac{\text{kcal}}{1000 \text{ cal}} = -12.8 \text{ kcal/g}$$

Mlib 05 0009
15:06, basic, multiple choice, > 1 min, fixed.

003
Calculate the enthalpy change for the reaction

$$2 \text{ SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{ SO}_3(g)$$
ΔH_f for $\text{SO}_2(\text{g}) = -16.9 \text{ kJ/mol}$;
ΔH_f for $\text{SO}_3(\text{g}) = -21.9 \text{ kJ/mol}$.

1. -5.0 kJ/mol rxn
2. -10.0 kJ/mol rxn **correct**
3. $+5.0 \text{ kJ/mol rxn}$
4. -77.6 kJ/mol rxn
5. $+10.0 \text{ kJ/mol rxn}$

Explanation:
ΔH_f for $\text{O}_2(\text{g}) = 0 \text{ kJ/mol}$

\[
\Delta H_{\text{rxn}} = \sum n \Delta H_{f, \text{products}} - \sum n \Delta H_{f, \text{reactants}}
\]

$= (2 \text{ mol})(-21.9 \text{ kJ/mol})
- (2 \text{ mol})(-16.9 \text{ kJ/mol})
- (1 \text{ mol})(0 \text{ kJ/mol})
= -10.0 \text{ kJ/mol rxn}$

For the methanol combustion reaction
$2 \text{CH}_3\text{OH(\text{l})} + 3 \text{O}_2(\text{g}) \rightarrow 2 \text{CO}_2(\text{g}) + 4 \text{H}_2\text{O(\text{g})}$
estimate the amount of $P \Delta V$ work done and tell whether the work was done on or by the system. Assume a temperature of 27°C.

1. 2.5 kJ, work done on the system
2. 2.5 kJ, work done by the system
3. 7.5 kJ, work done on the system
4. 7.5 kJ, work done by the system **correct**
5. No work is done in this reaction.

Explanation:
Considering only moles of gas,

$\Delta n = n_f - n_i = (2 + 4) - 3 = 3$.

$27^\circ \text{C} + 273 = 300 \text{ K}$

$w = -\Delta n RT
= - (3 \text{ mol})(8.314 \text{ J/mol} \cdot \text{K})(300 \text{ K})
= -7500 \text{ J} = -7.5 \text{ kJ}$

The system expands because Δn is positive, so the system does the work on the surroundings. Also, when w is negative, work is done by the system.
2. When ΔG for a reaction is positive the reaction cannot occur spontaneously.

3. When ΔG for a reaction is zero the system is at equilibrium.

4. When ΔH for a reaction is negative the reaction can never occur spontaneously. correct

5. When ΔH for a reaction is very positive the reaction will probably not occur spontaneously at lower temperatures.

Explanation: ΔG determines spontaneity. ΔG is dependent on ΔH, T and ΔS by the equation $\Delta G = \Delta H - T \Delta S$. If ΔH is negative and ΔS is positive, ΔG will be negative and the process will occur spontaneously.

DAL 12 007
15:14, general, multiple choice, < 1 min, fixed.

For the four chemical reactions
I. $3 \text{O}_2(g) \rightarrow 2 \text{O}_3(g)$
II. $2 \text{H}_2\text{O}_2(g) \rightarrow 2 \text{H}_2(g) + \text{O}_2(g)$
III. $\text{H}_2\text{O}_2(g) \rightarrow \text{H}_2\text{O}_2(l)$
IV. $2 \text{H}_2\text{O}_2(l) + \text{O}_2(g) \rightarrow 2 \text{H}_2\text{O}_2(l)$

Which ones are likely to exhibit a positive ΔS?

1. II correct
2. I, III and IV
3. I and II
4. III and IV
5. all have a positive ΔS

Explanation:
The Third Law of Thermodynamics states that the entropy of a perfect pure crystal at 0 K is 0. As disorder, randomness, and degrees of freedom increase, so does S. Entropy can increase by changing phase from solid to liquid to gas, and by increasing temperature, volume, or number of particles.

In reaction I, the final state has less gas particles (and thus less entropy) than the initial state. Therefore ΔS is negative.

In reaction II, the final state has more gas particles (and thus more entropy) than the initial state. Therefore ΔS is positive.

III describes a phase change. Gases have more degrees of freedom, randomness, and disorder (entropy) than liquids. The final state is a liquid and the initial state is a gas. Therefore ΔS is negative.

In reaction IV, the final state has 0 gas particles and the initial state has 1 mole of gas particles. Therefore ΔS is negative.

Msci 15 1412
15:15, general, multiple choice, > 1 min, fixed.

008
Calculate ΔG at 298 K for the reaction

$$2 \text{Ag}_2\text{O}(s) \rightarrow 4 \text{Ag}(s) + \text{O}_2(g).$$

<table>
<thead>
<tr>
<th>Species</th>
<th>ΔH°_f</th>
<th>S°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(s)</td>
<td>0.0</td>
<td>42.55</td>
</tr>
<tr>
<td>Ag$_2$O(s)</td>
<td>-30.57</td>
<td>121.7</td>
</tr>
<tr>
<td>O$_2$(s)</td>
<td>0.0</td>
<td>205.0</td>
</tr>
</tbody>
</table>

1. 21.9 kJ/mol rxn correct
2. 38.2 kJ/mol rxn
3. 52.7 kJ/mol rxn
4. -69.85 kJ/mol rxn
5. 81.2 kJ/mol rxn

Explanation:

$$\Delta H_{\text{rxn}}^0 = \sum n \Delta H_{\text{f prod}}^0 - \sum n \Delta H_{\text{f rct}}^0$$

$$= 0 \text{kJ/mol} - 2(-30.57 \text{kJ/mol})$$

$$= +61.14 \text{kJ/mol}$$

$$\Delta S_{\text{rxn}}^0 = \sum n \Delta S_{\text{f prod}}^0 - \sum n \Delta S_{\text{f rct}}^0$$
\[
\begin{align*}
\Delta G &= \Delta H - T \Delta S \\
&= (+61.14 \text{ kJ/mol}) \\
&\quad - 298 \text{ K}(0.1318 \text{ kJ/mol} \cdot \text{K}) \\
&= 21.9 \text{ kJ/mol rxn}
\end{align*}
\]

Msci 15 1437
15:14, general, multiple choice, > 1 min, fixed.

At the normal boiling point of water, \(\Delta H_{\text{vap}} = 40 \text{ kJ/mol} \).

What is the entropy change for

\[
\text{H}_2\text{O}(l) \rightarrow \text{H}_2\text{O}(g)
\]

1. 107 J/mol\cdot K **correct**
2. 40 kJ/mol\cdot K
3. \(-40\) kJ/mol\cdot K
4. 10 J/mol\cdot K
5. 400 J/mol\cdot K

Explanation:
At standard phase change points \(\Delta G = 0 \) because the process is in equilibrium.

\[
\Delta G = \frac{\Delta H}{T} \Delta S \\
\Delta S = \frac{\Delta H}{T} = \frac{40 \text{ kJ}}{373 \text{ K}} = 0.107 \text{ kJ/mol} \cdot \text{K} = 107 \text{ J/mol} \cdot \text{K}
\]

Msci 14 0202
14:02, general, multiple choice, > 1 min, fixed.

For which of the following ions would the hydration process give off the least heat?

1. \(\text{Al}^{3+} \)
2. \(\text{Mg}^{2+} \)
3. \(\text{Ba}^{2+} \)
4. \(\text{K}^{+} \) **correct**
5. \(\text{Li}^{+} \)

Explanation:
Small charge to radius ratio means that the hydration process will give off a small amount of heat. This term is smallest for \(\text{K}^{+} \).

Msci 13 1002
13:99, general, multiple choice, > 1 min, fixed.

Which of the following is an example of an exothermic phase change?

1. ice melting in a glass of iced tea.
2. a sheet of paper burning.
3. Water vapor condensing from the air on a cold window. **Correct**

4. Generation of electric power by falling water turning a turbine.

5. None of these is correct.

Explanation:

Mlib 04 1009
12:09, basic, multiple choice, > 1 min, fixed.

A 4.40 g piece of solid CO$_2$ (dry ice) is allowed to vaporize (change to CO$_2$(g)) in a balloon. The final volume of the balloon is 1.00 L at 300 K. What is the pressure of the gas?

1. 2.46 atm **Correct**
2. 246 atm
3. 0.122 atm
4. 122 atm
5. None of these

Explanation:

\[n = \frac{4.4 \text{ g CO}_2}{44 \text{ g CO}_2} \cdot \text{mol CO}_2 \]
\[V = 1.00 \text{ L} \]
\[T = 300 \text{ K} \]

Applying the ideal gas law equation,

\[PV = nRT \]
\[P = \frac{nRT}{V} \]
\[P = \frac{(0.1 \text{ mol})(300 \text{ K})}{1.00 \text{ L}} \cdot \left(\frac{0.08206 \text{ L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} \right) \]
\[= 2.46 \text{ atm} \]

Msci 12 0918 alg
12:07, general, multiple choice, < 1 min, wording-variable.

What volume will 20.0 L of He at 50.0°C and 1201 torr occupy at STP?

1. 26.7 L **Correct**
2. 37.4 L
3. 0.0374 L
4. 0.0267 L
5. 20.0 L
6. 12.7 L

Explanation:

Using the Combined Gas Law,

\[\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \]
\[V_2 = \frac{P_1V_1T_2}{T_1P_2} \]

and converting the temperature to K,

\[50.0°C + 273 = 323.0K \]

and recalling that STP implies standard temperature (0°C or 273 K) and pressure (1 atm or 760 torr), we have:

\[V_2 = \frac{(1201 \text{ torr})(20.0 \text{ mL})(273 \text{ K})}{(323.0 \text{ K})(760 \text{ torr})} \]
\[= 26.7 \text{ mL} \]

DAL 13 001
12:13, general, multiple choice, < 1 min, fixed.

Which of the following statements are both true and explained by the kinetic molecular theory of gas?

I. Gas molecules typically have velocities of hundreds of meters per second at room temperature.

II. There is an inverse square root relationship between temperature and gas velocity.

III. The smaller the molecular weight of a gas, the faster it diffuses.

IV. Intermolecular attractions between gas molecules reduce the effective pressure of the system.
1. I, III correct

2. All statements are correct.

3. I, II, III

4. I, III, IV

5. I

Explanation:
The kinetic molecular theory assumes that gas molecules are of discrete size and experience no intermolecular forces.

According to the kinetic molecular theory of gases, the average kinetic energy of gaseous molecules is directly proportional to the absolute temperature of the sample. The average kinetic energies of molecules of different gases are equal at a given temperature.

The average molecular speed is proportional to the square root of the absolute temperature divided by molecular weight.

\[P = \frac{nRT}{V} \]

\[P = \frac{(0.1 \text{ mol})(300 \text{ K})}{1.00 \text{ L}} \cdot \left(\frac{0.08206 \text{ L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} \right) \]

\[= 2.46 \text{ atm} \]

Msci 12 1401

12:15, general, multiple choice, > 1 min, fixed.

017

Which of the following is most likely to deviate from ideal behavior?

1. A gas at high temperature

2. A noble gas

3. A gas at low density correct

4. A gas at high pressure

Explanation:
Deviations from ideality occur due to molecular attractions or repulsions. More attractions or repulsions can occur when the molecules are closer together. Low pressure, high volume, and low density all correspond to molecules being far apart. Low temperature often corresponds to molecules being close together. It also corresponds to low kinetic energy which allows molecules to ‘stick together’ easier. High pressures also correspond to molecules being close together.

Mlib 04 1009

12:09, basic, multiple choice, > 1 min, fixed.

016

A 4.40 g piece of solid CO\(_2\) (dry ice) is allowed to vaporize (change to CO\(_2\)(g)) in a balloon. The final volume of the balloon is 1.00 L at 300 K.

What is the pressure of the gas?

1. 2.46 atm correct

2. 246 atm

3. 0.122 atm

4. 122 atm

5. none of these

Explanation:
\[n = \frac{4.4 \text{ g CO}_2}{44 \text{ g CO}_2} \cdot \frac{\text{mol CO}_2}{1 \text{ mol CO}_2} \]

\[= 0.1 \text{ mol CO}_2 \]

Applying the ideal gas law equation,

\[PV = nRT \]

\[P = \frac{(0.1 \text{ mol})(300 \text{ K})}{1.00 \text{ L}} \cdot \left(\frac{0.08206 \text{ L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} \right) \]

\[= 2.46 \text{ atm} \]

DAL 0301 07

12:15, general, multiple choice, < 1 min, fixed.

018

Rank the gases H\(_2\), CH\(_3\)F, N\(_2\), CF\(_4\), HF from left to right in terms of the increased non-ideality that results from a reduction in the effective pressure of the gas due to intermolecular forces.

1. H\(_2\), N\(_2\), CF\(_4\), CH\(_3\)F, HF correct

2. HF, CH\(_3\)F, CF\(_4\), N\(_2\), H\(_2\)

3. H\(_2\), HF, N\(_2\), CH\(_3\)F, CF\(_4\)
4. CF$_4$, CH$_3$F, N$_2$, HF, H$_2$

5. H$_2$, CH$_3$F, N$_2$, CF$_4$, HF

Explanation:
The stronger the intermolecular forces present, the greater the non-ideality.

Induced Dipole

H$_2$	smallest, most ideal
N$_2$	↓
CF$_4$	largest

Dipole – dipole

| CH$_3$F |

Hydrogen Bonding

| HF | least ideal |

Msci 13 0238
13:02, general, multiple choice, > 1 min, fixed.

019

Which response includes all of the following substances

I. H$_2$
II. CH$_4$
III. NH$_3$
IV. SiH$_4$
V. HF

that can exhibit strong hydrogen bonding, and no others?

1. II and V

2. I, II, and III

3. III, IV, and V

4. III and V correct

5. I, III, and IV

Explanation:
Permanent dipole-dipole interactions are stronger than London forces and occur between polar covalent molecules due to charge separation.

H-bonds are a special case of very strong dipole-dipole interactions. They only occur when H is bonded to small, highly electronegative atoms – F, O or N only.

Ion-ion interactions are the strongest due to extreme charge separation and occur between ionic molecules. They can be thought of as both inter- and intramolecular bonding.

H$_2$, CH$_4$, SiH$_4$ – Dispersion

NH$_3$, HF – H-bonding

Msci 13 0303
13:02, general, multiple choice, > 1 min, fixed.

020

On a relative basis, the weaker the intermolecular forces in a substance,

1. the larger is its heat of vaporization.

2. the more it deviates from the ideal gas law.

3. the greater is its vapor pressure at a particular temperature. correct

4. the larger is its heat of fusion.

5. the higher is its melting point.

Explanation:
Weak intermolecular forces allow molecules to break away from one another; therefore, vapor pressure will be larger.

Sparks10 RDmod
13:99, general, multiple choice, < 1 min, fixed.

021

Based on the types and strengths of intermolecular forces present, place the compounds

C$_2$H$_6$, CH$_4$, H$_2$O, SO$_2$, MgO

in order from lowest to highest boiling point:

1. C$_2$H$_6$, CH$_4$, H$_2$O, SO$_2$, MgO
2. CH₄, C₂H₆, H₂O, SO₂, MgO
3. CH₄, C₂H₆, SO₂, H₂O, MgO correct
4. MgO, H₂O, SO₂, C₂H₆, CH₄
5. CH₄, H₂O, C₂H₆, SO₂, MgO
6. MgO, SO₂, C₂H₆, H₂O, CH₄

Explanation:

1. 1.55 Kcal correct
2. 155 cal
3. 15.5 cal
4. 61.5 Kcal
5. 6150 cal

Explanation:

How is the P, T phase diagram for water different from P, T phase diagrams of other common chemicals?

1. The slope of the phase transition line between solid and liquid is negative. correct
2. The triple point occurs near the boiling point of water.
3. It is not possible to produce supercritical H₂O.
4. Sublimation does not occur.
5. Water as a liquid is less dense than water as a solid.

Explanation:

Water is unique in that the slope of the phase transition line between solid and liquid is negative. Solid water is less dense than liquid water, where most other solids are more dense than their liquids.

Consider the phase diagram for water below.
3. calcium bromide / ionic

4. lithium / covalent correct

5. methane / molecular

Explanation:
Molecular solids consist of molecules held together by weak intermolecular forces. Ionic solids are held together by electrostatic attraction between metal cations and non-metal anions. Metallic solids are composed only of metals held together by metallic bonds. Covalent solids are like huge molecules held together by covalent bonds. Carbon in diamond is the most known example. Group IV B elements can form tetrahedral electronic geometries. Lithium will form metal solids.

Consider an aqueous solution of CaCl₂ and the following statements:
Z1) Hydration is a special case of solvation in which the solvent is water.
Z2) The oxygen ends of water molecules are attracted toward Ca²⁺ ions.
Z3) The hydrogen ends of water molecules are attracted toward Cl⁻ ions.

Which response contains all the statements that are true and no false statements?

1. Z1
2. Z2
3. Z3
4. Z1 and Z2
5. Z1, Z2, and Z3 correct

Explanation:
Z1 is true; “hydration” cannot happen with any other solvent than water.
Z2 and Z3 are also true since oxygen (δ−) will be attracted to the positive Ca⁺ and the hydrogen (δ+) will be attracted to the negative Cl⁻ ions.

Consider the solutions any other solvent than water.
Z1) 0.5 M Na$_2$SO$_4$
Z2) 0.6 M NaCl
Z3) 1.0 M sugar

What answer gives the expected order of increasing osmotic pressure?

1. lowest Z1 < Z2 < Z3 highest
2. lowest Z2 < Z1 < Z3 highest
3. lowest Z3 < Z2 < Z1 highest correct
4. lowest Z3 < Z1 < Z2 highest
5. lowest Z2 < Z3 < Z1 highest

Explanation:

The osmotic pressure of a liquid increases as the number of moles of solute particles or ions increases. 0.5 mol/L Na$_2$SO$_4$ means 0.5 moles of SO$_4$ ions and 1 mole of Na ions for a total of 1.5 ions. 0.6 mol/L NaCl means 0.6 moles of each Na and Cl ions for a total of 1.2 moles of ions. 1.0 mol/L of sugar means 1 mole of sugar molecules. Therefore, since Na$_2$SO$_4$ has the highest concentration of particles or ions, it will have the highest osmotic pressure. NaCl is next, followed by sugar.

DAL 0301 09

14:99, general, multiple choice, < 1 min, fixed.

Several interesting observations from the world around you are listed below.

Which of these is NOT explained by a colligative property?

1. At high altitude it takes longer to cook spaghetti. correct
2. The freezing point of water is lowered when salt is added.
3. Antifreeze is added to a car radiator to keep the car from overheating.
4. Water boils at a higher temperature when salt is added.
5. A lobster will die when placed in fresh water.

Explanation:

Colligative properties of a solution depend on the number of solute particles in solution, not the type. Boiling point variations due to pressure changes have nothing to do with solutions and colligative properties (boiling point variations due to particles in solution, etc...).

Msci 14 1207

14:13, general, multiple choice, > 1 min, fixed.

When 20.0 grams of an unknown nonelectrolyte compound are dissolved in 500 grams of benzene, the freezing point of the resulting solution is 3.77°C. The freezing point of pure benzene is 5.48°C, and its freezing point depression constant is $K_f = 5.12\, ^\circ C/molality$.

What is the molecular weight of the unknown compound?

1. 120 grams/mole correct
2. 80.0 grams/mole
3. 100 grams/mole
4. 140 grams/mole
5. 160 grams/mole
6. 0.334 grams/mole
7. 240 grams/mole
8. 54 grams/mole

Explanation:

$$
\Delta T_f = T_f^w - T_f
$$

$$
= 5.48^\circ C - 3.77^\circ C = 1.71^\circ C
$$

$$
\Delta T_f = k_f \cdot m
$$

$$
m = \frac{\Delta T_f}{k_f}
$$

$$
= \frac{1.71^\circ C}{5.12^\circ C/m} = 0.334 \, m
$$
\[m = \frac{\text{mol compound}}{\text{kg benzene}} \times \frac{\text{g compound}}{\text{MW}_{\text{compound}}} \times \frac{\text{kg benzene}}{\text{g compound}} \]

\[\text{MW}_{\text{compound}} = \frac{\text{g compound}}{\text{kg benzene}} \times m \]

\[= \frac{20.0 \text{ g compound}}{0.500 \text{ kg benzene}} \times \frac{1 \text{ kg benzene}}{0.334 \text{ mol compound}} \]

\[= 120 \text{ g/mol} \]

Mlib 04 4055

14:03, basic, multiple choice, > 1 min, fixed.

030

Which of the following alcohols would be the least miscible with water?

1. hexanol, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} \) **correct**

2. pentanol, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH} \)

3. propanol, \(\text{CH}_3\text{CH}_2\text{OH} \)

4. ethanol, \(\text{CH}_3\text{CH}_2\text{OH} \)

5. methanol, \(\text{CH}_3\text{OH} \)

Explanation:

The polar OH group is miscible with water but as the nonpolar hydrocarbon chain lengthens, solubility decreases.