CH302 Practice Quiz 5 on Complex Equilibria

1. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is the basic salt of sulfurous acid which is a weak diprotic acid. If $\mathrm{K}_{\mathrm{a} 1}=1.5 \times 10^{-2}$ and $\mathrm{K}_{\mathrm{a} 2}=1.2 \mathrm{x}$ 10^{-7}, what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration in a sulfite $\left(\mathrm{SO}_{3}{ }^{=}\right)$solution that is 0.025 M ?

1. 9.6 M correct

2. 4.4 M
3. 10.1 M
4. 9.0 M
5. What is the pH of a 0.5 M solution of an acid with $\mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-1}$?
6. 0.71 correct
7. 3.05
8. 6.8
9. 11.08
10. What is the pH of $0: 15 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}(\mathrm{aq})$ if $\mathrm{K}_{\mathrm{a} 1}=7.6 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.2 \times 10^{-8}$ and $\mathrm{K}_{\mathrm{a} 3}=2.1 \times 10^{-13}$?
11. 9.93 correct
12. $8: 31$
13. 7.82
14. 6.92
15. 3.02
16. Write the charge balance equation for a dilute aqueous solution of HClO_{2}.
17. $\left[\mathrm{ClO}_{2}^{-}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
18. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
19. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{ClO}_{2}^{-}\right]$
20. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{ClO}_{2}^{-}\right]+\left[\mathrm{OH}^{-}\right]$correct
21. $\left[\mathrm{HClO}_{2}\right]_{\text {initial }}=\left[\mathrm{ClO}_{2}{ }^{-}\right]$
22. $\left[\mathrm{HClO}_{2}\right]_{\text {initial }}=\left[\mathrm{HClO}_{2}\right]+\left[\mathrm{ClO}_{2}{ }^{-}\right]$

5 For a solution labeled $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})$,"

1. $\left[\mathrm{S}^{=}\right]>0.10 \mathrm{M}$.
2. $\left[\mathrm{S}^{=}\right]>\left[\mathrm{HS}^{-}\right]$correct
3. $\left[\mathrm{S}^{=}\right]=\left[\mathrm{HS}^{-}\right]$
4. $[\mathrm{OH}-]=0.10 \mathrm{M}$.
5. [OH-] > 0.10 M .

6 A weakly basic solution with a pH near 7 is formed when a solution of 1×10^{-7} moles of NH_{3} is added to 1 liter of water. How many equations must be solved in order to accurately calculate all the unknown concentrations formed at equilibrium in solution?

1. 1
2. 2
3. 3
4. 4 correct
5. 5
6. 6
7. 7
8. What is the concentration of $\mathrm{HSO}_{4}{ }^{-}$in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$? $\mathrm{K}_{\mathrm{a} 1}$ is strong and $\mathrm{K}_{\mathrm{a} 2}=1: 2$ a 10^{-2}.
9. $9.8 \times 10^{-3} \mathrm{M}$ correct
10. $1: 2 \times 10^{-3} \mathrm{M}$
11. $4: 0 \times 10^{-2} \mathrm{M}$
12. $1: 0 \times 10^{-3} \mathrm{M}$
13. $4: 0 \times 10^{-2} \mathrm{M}$
14. There are three sources of protons to be considered in calculating the pH of a solution formed when equal volumes of $1 \times 10^{-9} \mathrm{M} \mathrm{HCl}$ and $1 \times 10^{-9} \mathrm{M}$ acetic acid (HAc) are added to water. Assume a K_{a} of 1:8 $\times 10^{-5}$ for acetic acid. Rank from most to least, the concentration of protons contributed at equilibrium from $\mathrm{HCl}, \mathrm{HAc}$ and H 2 O .
15. $\mathrm{HCl}, \mathrm{HAc}, \mathrm{H}_{2} \mathrm{O}$
16. $\mathrm{HAc}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$
17. $\mathrm{HAc}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}$
18. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{HAc}$ correct
19. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HAc}$
