CH 302 Spring 2005 Worksheet 7: Liquids and Solids

1. Calculate the amount of heat (J) required to convert 180 g of water at 10.0°C to steam at 105.0°C.

180 g H₂O x (4.18 J/g.°C) x 100°C – 10.0°C) = 6.77 x 10^4 J 180 g H₂O x (2.26 x 10^3 J/g) = 4.07 x 10^5 J 180 g H₂O x (2.03 J/g. °C) x (105.0°C – 100.0°C) 1.8 x 10^3 J = 0.018 x 10^5 J Total heat = 6.77 x 10^4 J + 4.07 x 10^5 J + 0.018 x 10^5 J = 4.76 x 10^5 J

 Predict the order of increasing boiling points for the following: H₂S; H₂O; CH₄; H₂; KBr H₂; CH₄; H₂S; H₂O; KBr

3. The molar heat of fusion, ΔH_{fus} , of Na is 2.6 kJ/mol at its melting point, 97.5°C. How much heat must be absorbed by 5.0g of solid Na at 97.5°C to melt it? 5.0 g Na x (1 mol Na/23 g Na) x (2.6 kJ/1 mol Na) = 0.57 kJ

4. A liquid is heated at atmospheric pressure. For each of the properties listed, predict whether they would increase or decrease.

(a) Viscosity	decrease
(b) Density	decrease
(c) Surface Tension	decrease
(d) Vapor Pressure	increase
(e) Tendency to Evaporate	increase

5. How much heat would be required to convert 234.3 g of solid benzene, $C_{6}H_{6(s)}$, at 5.5 °C into benzene vapor, $C_{6}H_{6(g)}$, at 100.0 °C?

Benzene has the following molar heat capacities:

 $C_6H_6(l) = 136 \text{ J/mol }^\circ\text{C}$, and $C_6H_6(g) = 81.6 \text{ J/mol }^\circ\text{C}$

The molar heat of fusion for benzene is 9.92 kJ/mol and the molar heat of vaporization for benzene is 30.8 kJ/mol.

The melting point of benzene is 5.5 °C; and the boiling point of benzene is 80.1 °C. Benzene's molecular weight is 78.0 g/mol.

$$234.5 \text{g} \times \frac{\text{mol}}{78.0 \text{g}} = 3 \text{ mol}$$

$$C_{6}H_{6(s)}, 5.5 \ ^{\circ}\text{C} \rightarrow C_{6}H_{6(l)}, 5.5 \ ^{\circ}\text{C} \rightarrow C_{6}H_{6(l)}, 80.1 \ ^{\circ}\text{C} \rightarrow C_{6}H_{6(g)}, 80.1 \ ^{\circ}\text{C} \rightarrow C_{6}H_{6(g)}, 100.0 \ ^{\circ}\text{C}$$
Step 1:
$$\frac{9.92 \text{ kJ}}{\text{mol}} \times (3 \text{ mol}) = 29.8 \text{ kJ}$$
Step 2:
$$\frac{136 \text{ J}}{\text{mol} \cdot ^{\circ}\text{C}} \times (3 \text{ mol}) \times (80.1 - 5.5) \ ^{\circ}\text{C} = 30,437 \text{J} = 30.4 \text{ kJ}$$

Step 3: $\frac{30.8 \text{ kJ}}{\text{mol}} \times (3 \text{ mol}) = 92.4 \text{ kJ}$ Step 4: $\frac{81.6 \text{ J}}{\text{mol} \cdot ^{\circ}\text{C}} \times (3 \text{ mol}) \times (100.0 - 80.1)^{\circ}\text{C} = 4871.52 \text{ J} = 4.87 \text{ kJ}$ Total: 29.8 kJ + 30.4 kJ + 92.4 kJ + 4.9 kJ = 158 kJ

6. Calculate the amount of heat that must be absorbed by 50.0 grams of ice at -12.0° C to convert it to water at 20.0°C.

50.0 g x (2.09 J/g.°C) x (0°C - -12.0V) = 1.25 x 10^3 J 50.0 g x (334 J/g) = 1.67 x 10^4 J 50.0 g x (4.18 J/g°C x (20.0°C - 0°C) = 0.418 x 10^4 J Total heat absorbed = 2.21 x 10^4 J = 22.1 kJ

7. For the reaction

 $H_2O_{(s)} \rightarrow H_2O_{(g)}$

(a) Would ΔH be positive or negative? Why?

Positive, because the gaseous molecules have more energy than molecules in a solid.

(b) Would ∆S be positive or negative? Why?
 Positive, because gaseous compounds are more disordered than solid compounds.

8. At the normal boiling point of water, $\Delta H_{\text{vap}} = 40 \text{ kJ/mol}$. What is the entropy change for

 $H_2O_{(l)} \rightarrow H_2O_{(g)}?$ $\Delta G = 0$ $\Delta G = \Delta H - T \Delta S$ $\Delta S = \Delta H/T = 40 \text{ kJ.mol}^{-1}/373\text{ K} = 0.107 \text{ kJ/mol.K}$

9. What is the number of calories needed to raise the temperature of 200 grams of water from 20° C to 50° C?

(4.184 J/g.°C) x (200g) x (30°C) = 25104 J 25104 J x .23901 cal/J = 6000 calories

10. Put the following compounds in order from lowest boiling point to highest boiling point and justify your answer.

CH₄; C₄H₁₀; C₂H₆; C₃H₈; C₅H₁₂

Boiling point tends to increase with molecular weight, so CH₄; C₂H₆; C₃H₈; C₄H₁₀; C₅H₁₂.

11. For each solid classify its bonds as ionic, covalent, or metallic:

(a) KF	ionic
(b) CsI	ionic
(c) Ni	metallic
(d) C_6H_6	molecular
(e) H_2O	molecular