CH 302 Spring 2005

Worksheet 7: Liquids and Solids

1. Calculate the amount of heat (J) required to convert 180 g of water at $10.0^{\circ} \mathrm{C}$ to steam at $105.0^{\circ} \mathrm{C}$.
$\left.180 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times\left(4.18 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}\right) \times 100^{\circ} \mathrm{C}-10.0^{\circ} \mathrm{C}\right)=6.77 \times 10^{\wedge} 4 \mathrm{~J}$
$180 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times\left(2.26 \times 10^{\wedge} 3 \mathrm{~J} / \mathrm{g}\right)=4.07 \times 10^{\wedge} 5 \mathrm{~J}$
$180 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times\left(2.03 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}\right) \times\left(105.0^{\circ} \mathrm{C}-100.0^{\circ} \mathrm{C}\right) 1.8 \times 10^{\wedge} \mathbf{3 J}=0.018 \times 10^{\wedge} 5 \mathrm{~J}$
Total heat $=6.77 \times 10^{\wedge} 4 \mathrm{~J}+4.07 \times 10^{\wedge} 5 \mathrm{~J}+0.018 \times 10^{\wedge} 5 \mathrm{~J}=4.76 \times 10^{\wedge} 5 \mathrm{~J}$
2. Predict the order of increasing boiling points for the following:
$\mathrm{H}_{2} \mathrm{~S} ; \mathrm{H}_{2} \mathrm{O} ; \mathrm{CH}_{4} ; \mathrm{H}_{2} ; \mathrm{KBr}$
$\mathbf{H}_{\mathbf{2}} ; \mathbf{C H}_{\mathbf{4}} ; \mathrm{H}_{\mathbf{2}} \mathrm{S} ; \mathrm{H}_{\mathbf{2}} \mathbf{O} \mathbf{;} \mathbf{K B r}$
3. The molar heat of fusion, $\Delta H_{\text {fus }}$, of Na is $2.6 \mathrm{~kJ} / \mathrm{mol}$ at its melting point, $97.5^{\circ} \mathrm{C}$. How much heat must be absorbed by 5.0 g of solid Na at $97.5^{\circ} \mathrm{C}$ to melt it?

$5.0 \mathrm{~g} \mathrm{Na} \times(1 \mathrm{~mol} \mathrm{Na} / 23 \mathrm{~g} \mathrm{Na}) \times(2.6 \mathrm{~kJ} / 1 \mathrm{~mol} \mathrm{Na})=0.57 \mathrm{~kJ}$

4. A liquid is heated at atmospheric pressure. For each of the properties listed, predict whether they would increase or decrease.

(a) Viscosity	decrease
(b) Density	decrease
(c) Surface Tension	decrease
(d) Vapor Pressure	increase
(e) Tendency to Evaporate	increase

5. How much heat would be required to convert 234.3 g of solid benzene, $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~s})$, at 5.5 ${ }^{\circ} \mathrm{C}$ into benzene vapor, $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$, at $100.0^{\circ} \mathrm{C}$?

Benzene has the following molar heat capacities:

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})=136 \mathrm{~J} / \mathrm{mol}{ }^{\circ} \mathrm{C} \text {, and } \\
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})=81.6 \mathrm{~J} / \mathrm{mol}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The molar heat of fusion for benzene is $9.92 \mathrm{~kJ} / \mathrm{mol}$ and the molar heat of vaporization for benzene is $30.8 \mathrm{~kJ} / \mathrm{mol}$.
The melting point of benzene is $5.5^{\circ} \mathrm{C}$; and the boiling point of benzene is $80.1^{\circ} \mathrm{C}$. Benzene's molecular weight is $78.0 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
& 234.5 \mathrm{~g} \times \frac{\mathrm{mol}}{78.0 \mathrm{~g}}=3 \mathrm{~mol} \\
& \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~s})}, 5.5{ }^{\circ} \mathrm{C} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{l})}, 5.5{ }^{\circ} \mathrm{C} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{l})}, 80.1^{\circ} \mathrm{C} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}, 80.1^{\circ} \mathrm{C} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6(\mathrm{~g})}, 100.0^{\circ} \mathrm{C} \\
& \text { Step 1: } \frac{9.92 \mathrm{~kJ}}{\mathrm{~mol}} \times(3 \mathrm{~mol})=29.8 \mathrm{~kJ} \\
& \text { Step 2: } \frac{136 \mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}} \times(3 \mathrm{~mol}) \times(80.1-5.5)^{\circ} \mathrm{C}=30,437 \mathrm{~J}=30.4 \mathrm{~kJ}
\end{aligned}
$$

Step 3: $\frac{30.8 \mathrm{~kJ}}{\mathrm{~mol}} \times(3 \mathrm{~mol})=92.4 \mathrm{~kJ}$
Step 4: $\frac{81.6 \mathrm{~J}}{\mathrm{~mol} \cdot{ }^{\circ} \mathrm{C}} \times(3 \mathrm{~mol}) \times(100.0-80.1)^{\circ} \mathrm{C}=4871.52 \mathrm{~J}=4.87 \mathrm{~kJ}$
Total: $29.8 \mathrm{~kJ}+30.4 \mathrm{~kJ}+92.4 \mathrm{~kJ}+4.9 \mathrm{~kJ}=158 \mathrm{~kJ}$
6. Calculate the amount of heat that must be absorbed by 50.0 grams of ice at $-12.0^{\circ} \mathrm{C}$ to convert it to water at $20.0^{\circ} \mathrm{C}$.
$50.0 \mathrm{~g} \times\left(\mathbf{2 . 0 9} \mathrm{J} / \mathrm{g} .{ }^{\circ} \mathrm{C}\right) \times\left(0^{\circ} \mathrm{C}-\mathbf{- 1 2 . 0 V}\right)=1.25 \times 10^{\wedge} 3 \mathrm{~J}$
$50.0 \mathrm{~g} \times(334 \mathrm{~J} / \mathrm{g})=1.67 \times 10^{\wedge} 4 \mathrm{~J}$
$50.0 \mathrm{~g} \times\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times\left(20.0^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)=0.418 \times 10^{\wedge} \mathbf{4} \mathrm{J}\right.$
Total heat absorbed $=2.21 \times 10^{\wedge} 4 \mathrm{~J}=22.1 \mathrm{~kJ}$
7. For the reaction
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$,
(a) Would $\Delta \mathrm{H}$ be positive or negative? Why?

Positive, because the gaseous molecules have more energy than molecules in a solid.
(b) Would $\Delta \mathrm{S}$ be positive or negative? Why?

Positive, because gaseous compounds are more disordered than solid compounds.
8. At the normal boiling point of water, $\Delta H_{\text {vap }}=40 \mathrm{~kJ} / \mathrm{mol}$. What is the entropy change for

$$
\begin{aligned}
& \quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} ? \\
& \Delta \mathrm{G}=\mathbf{0} \\
& \boldsymbol{\Delta G}=\boldsymbol{\Delta H}-\mathbf{T} \Delta \mathbf{\Delta} \\
& \boldsymbol{\Delta S}=\boldsymbol{\mathbf { S }} / \mathbf{T}=\mathbf{4 0} \mathbf{~ k J . m o l}{ }^{-1} / \mathbf{3 7 3 K}=\mathbf{0 . 1 0 7} \mathbf{~ k J} / \mathrm{mol} . \mathrm{K}
\end{aligned}
$$

9. What is the number of calories needed to raise the temperature of 200 grams of water from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$?
$\left(4.184 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}\right) \times(200 \mathrm{~g}) \times\left(30^{\circ} \mathrm{C}\right)=25104 \mathrm{~J}$
$25104 \mathrm{~J} \times .23901 \mathrm{cal} / \mathrm{J}=6000$ calories
10. Put the following compounds in order from lowest boiling point to highest boiling point and justify your answer.
$\mathrm{CH}_{4} ; \mathrm{C}_{4} \mathrm{H}_{10} ; \mathrm{C}_{2} \mathrm{H}_{6} ; \mathrm{C}_{3} \mathrm{H}_{8} ; \mathrm{C}_{5} \mathrm{H}_{12}$
Boiling point tends to increase with molecular weight, so $\mathbf{C H}_{4} ; \mathbf{C}_{\mathbf{2}} \mathbf{H}_{6} ; \mathrm{C}_{3} \mathbf{H}_{\mathbf{8}} ; \mathrm{C}_{4} \mathbf{H}_{10}$; $\mathrm{C}_{5} \mathrm{H}_{12}$.
11. For each solid classify its bonds as ionic, covalent, or metallic:
(a) KF
ionic
(b) CsI
ionic
(c) Ni metallic
(d) $\mathrm{C}_{6} \mathrm{H}_{6} \quad$ molecular
(e) $\mathrm{H}_{2} \mathrm{O}$ molecular
