1. How many mL of a 0.1 M solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ are required to neutralized 200 mL of a 0.2 M solution of HNO_{3} ?

200 mL of a .2 M solution of HNO_{3} will have (. 2 L$)(.2 \mathrm{~mol} / \mathrm{L})=0.04$ moles H^{+}
to get .04 moles OH^{-}you'll need 200 mL
$(\mathrm{V})\left(.1 \mathrm{moles} \mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{L}\right)\left(2\right.$ moles $\mathrm{OH}^{-} / 1$ moles $\mathrm{Ca}\left(\mathrm{OH}_{2}\right)=0.04$ moles of OH^{-}
$\mathrm{V}=.2 \mathrm{~L}$ or 200 mL
2. The pK_{a} of the amino acid aspartic acid is 4 . In a solution in which the $\mathrm{pH}=7.5$ what fraction of the aspartic acid is protonated?
A. 0.03%
B. 7%
C. 23.4%
D. 72%
E. 99.5%
$\mathrm{pK}_{\mathrm{a}}=\mathrm{pH}-\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right) \quad 4=7.5-\log \left(\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right) \quad\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=3162$
$[\mathrm{HA}] /\left([\mathrm{HA}]+\left[\mathrm{A}^{-}\right]\right)=1 / 3163=0.0003$ or $.03 \%$
alternatively you know the pH is more than 3 pH units away from the pK so the protonated must be less than .1\%.
3. At what pH would the aspartic acid be 50% protonated?

When the $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ the concentration of $\left[\mathrm{A}^{-}\right]=[\mathrm{HA}]$ so $\mathrm{pH}=4$
4. The K_{sp} of magnesium hydroxide is 1.8×10^{-11}. What is the pH of saturated solution of magnesium hydroxide in 0.01 M HCl ?

First you can neutralized the acid with the $\mathrm{Mg}(\mathrm{OH})_{2}$. You'll need 0.5 moles of $\mathrm{Mg}(\mathrm{OH})_{2}$ for every mole of HCl . The $\left[\mathrm{H}^{+}\right]=10^{-2}$ so the $\left[\mathrm{Mg}^{2+}\right]=5 \times 10^{-3} . \mathrm{K}_{\mathrm{so}}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$\left[\mathrm{OH}^{-}\right]=\operatorname{sqrt}\left(\mathrm{Ksp} /\left[\mathrm{Mg}^{2+}\right]\right)=\operatorname{sqrt}\left(\left(1.8 \times 10^{-11}\right) /\left(5 \times 10^{-3}\right)\right)=6 \times 10^{-5}$
$\mathrm{pOH}=4.22 \quad \mathrm{pH}=9.78$
5. The K_{a} of formic acid is 1.8×10^{-4}. Suggest a means (concentrations of formic acid and sodium formate) to make a buffer solution with a pH of 4 .

To get the $\mathrm{pH}=4$ you need a ratio of $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ of 1.8
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=10^{-4}\left[\mathrm{~A}^{-}\right] /[\mathrm{HA}]=1.8 \times 10^{-4} \quad[\mathrm{~A}-] /[\mathrm{HA}]=1.8$
Any ratio would work however, the higher the concentrations the better.
180 mL of 1 M formate and 100 mL of 1 M formic acid

500 ml of .18 M formate and 500 mL of 0.1 M formic acid

6. Does 1 L of your proposed buffer system have the capacity to remain a buffer if you add 10 mL of 1 M HCl ?

Taking the last example, the concentration of formate in the final 1 L solution is .09 and the formic acid is .05 M. There are .09 moles of formate in the solution and .05 moles of formic acid. Adding .01 L of a 1 M HCl solution will add $(.01 \mathrm{~L})(1 \mathrm{~mol} / \mathrm{L})=.01$ moels of H^{+}. This can be neutralized by the formate yielding a final solution with .08 moles of formate, .06 moles of formic acid. Yes the system will remained buffred. The pH will change slightly. The final pH would be
$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}}[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]=\left(1.8 \times 10^{-4}\right)(.06) /(.08)=1.35 \times 10^{-4} \mathrm{pH}=-\log \left(1.35 \times 10^{-4}\right)=3.87$

7 If you mix the following four solutions what is the pH of the final solution. 100 mL of $1 \mathrm{M} \mathrm{HCl}, 200 \mathrm{~mL}$ of 1 $\mathrm{M} \mathrm{NaOH}, 100 \mathrm{~mL}$ of 0.4 M HF , and 400 mL of 0.1 M NaF . The K_{a} for HF is 7.2×10^{-4}.

There are many way to think about how to neutralize this solution. The easiest is to first look at the strong acid and strong base. 100 ml of $1 \mathrm{M} \mathrm{HCl}+200 \mathrm{~mL}$ of 1 M NaOH has
$(.1 \mathrm{~L})(1 \mathrm{~mol} / \mathrm{L})=.1 \mathrm{M} \mathrm{H}+$ and $(.2 \mathrm{~L})(1 \mathrm{~mol} / \mathrm{L})=.2 \mathrm{OH}$-. The mixture will have .1 moles of OH - and a volume of 300 mL .

The HF and NaF will make a buffer solution with $(.1 \mathrm{~L})(.4 \mathrm{~mol} / \mathrm{L})=.04 \mathrm{~mol} \mathrm{HF}$ and $(.4 \mathrm{~L})(.1 \mathrm{~mol} / \mathrm{L})=.04 \mathrm{~mole}$ NaF .

Adding the .1 mole OH - to this solution will neutralize all the HF to F- leaving .06 moles of OH - in a total volume of $300 \mathrm{~mL}+500 \mathrm{~mL}=800 \mathrm{~mL}$. [OH-] $=.06 \mathrm{~mol} / .8 \mathrm{~L}=7.5 \times 10^{-2} \mathrm{pOH}=1.12$ the $\mathrm{pH}=12.88$
8. You attempt to dissolve 0.25 g of PbCl_{2} in 50 mL of water. You find that all but 0.03 g dissolves.

What is solubility of PbCl_{2} in water in units of $\mathrm{g} \mathrm{L}^{-1}$?
$.25-.03=.22 \mathrm{~g}$ dissolve
$(.22 \mathrm{~g}) /(.05 \mathrm{~L})=4.4 \mathrm{~g} / \mathrm{L}$
What is the solubility product for PbCl_{2} ?
If 4.4 g dissolve in 1 L the concentration of PbCl_{2} is $\left(4.4 \mathrm{~g} / 278.1 \mathrm{~g} \mathrm{~mol}^{-1}\right)=0.0158 \mathrm{~mol}$
$\left[\mathrm{Pb}^{2+}\right]=.0158 \mathrm{~mol} \mathrm{~Pb}{ }^{2+} / 1 \mathrm{~L}=.0158 \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=2 \times .0158 \mathrm{~mol} \mathrm{Cl}^{-} / 1 \mathrm{~L}=.0316 \mathrm{M}$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(.0158)(.0316)^{2}=1.58 \times 10^{-5}$

