CH 302 Spring 2007 Worksheet 6 Key

1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?

Answer: $K_w = K_a K_b = 1 \times 10^{-14}$ so $K_b = 1 \times 10^{-5}$ [OH⁻] = $(K_b C_b)^{1/2} = [(0.1)(10^{-5})]^{1/2} = 10^{-3}$ pOH = 3 pH = 14-pOH = 11

2. You decide to titrate it against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?

Answer: You have 0.075 mol ammonia and 0.025 mol HCl. Neutralize: You end up with 0.05 mol ammonia and 0.025 mol ammonium ion (NH₄⁺). This is a buffer.

 $[OH^{-}] = K_b(C_b/C_a) = 10^{-5}(0.05/0.025) = 2 \times 10^{-5}$ pOH = -log(2 x 10⁻⁵) = 4.7 pH = 14-4.7 = <u>9.3</u>

3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?

Answer: You have 0.075 mol of each. Neutralize: You end up with 0.075 mol of ammonium ion. This is a weak acid. $[H^+] = (K_a C_a)^{1/2}$ Remember Ka = Kw/Kb = $10^{-14}/10^{-5} = 10^{-9}$ Also remember that the total volume is 75 mL + 750 mL = 775 mL $[H^+] = [(10^{-9})(0.075 \text{ mol}/0.775 \text{ L})]^{1/2} = 9.8 \text{ x } 10^{-6} \text{ M}$ $pH = -log(9.8 \text{ x } 10^{-6}) = 5.0$

4. You keep going until you've added 100 mL HCl. What is this final pH?

Answer: You have 0.075 mol ammonia and 0.1 mol HCl. Neutralize: You end up with 0.025 mol H+ and 0.075 mol ammonium ion. The ammonium ions are weak; ignore them. This is a strong acid solution. $[H^+] = C_a = 0.025 \text{ mol}/(0.850 \text{ L}) = 0.029 \text{ M}$ $pH = -\log(0.029 \text{ M}) = 1.5$

5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?

Answer: $K_{sp} = x^2$ $x = (K_{sp})^{1/2} = (1.77 \text{ x } 10^{-10})^{1/2} = 1.33 \text{ x } 10^{-5}$

6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?

Answer: $K_{sp} = (3x)^3 (2x)^2 = 10x^5$ $x = (K_{sp}/108)^{1/5} = (9.86 \times 10^{-25}/108)^{1/5} = 6.20 \times 10^{-6}$

7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}	Molar solubility	Rank
ZnS	2.0 x 10 ⁻²⁵	4.5 x 10-13	2
Ag_2S	1.0 x 10 ⁻⁴⁹	2.9 x 10-17	3

Fe(OH) ₃	6.3 x 10 ⁻³⁸	2.9 x 10-10	1
Fe_2S_3	1.4 x 10 ⁻⁸⁸	1.1 x 10-18	4

8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?

Answer: Calculate Cb $C_b = (0.1 \text{ g} / (40 \text{ g/mol}))/(2.5 \text{ x} 10^6 \text{ L}) = 10^{-9} \text{ M}$ If we use our approximation, $[OH^-] = C_b = 10^{-9}$ But water contributes 100 times this much, so we can't ignore it. $[OH^-] = 10^{-9} + 10^{-7} = 1.01 \text{ x} 10^{-7}$ $pOH = -log(1.01 \text{ x} 10^{-7}) = 6.996 \text{ pH} = 7.004$ $(Or, \text{pH} \approx 7)$

9. What if you'd dropped 10 kg of NaOH into the pool?

```
Answer:

You drop in 100,000 times as much NaOH, C_b is 100,000 times larger.

C_b = 10^{-4} M

Now our approximation holds.

[OH^{-}] = 10^{-4} M

pOH = 4 pH = 10
```

10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

Answer: Ks are far apart—with respect to K_w it means the K_a or K_b is 1 x 10⁻¹⁰ or larger C is large enough—with respect to water they are values greater than 10⁻⁵

- 11. Briefly explain the major reason that any of the above assumptions being false would invalidate our approximations.
 - Answer: In either case, it means that the contribution of H+ or OH- from other species in solution is non-negligible. With respect to water it means that 10^{-7} M H⁺ or OH^- is at least 1% of the contribution to total.
- 12. You have a neutralization reaction, $OH^- + HA \leftrightarrow H_2O + A^-$. Given the following starting concentrations of OH^- and HA, give the end concentrations of OH^- , HA, and A^- .

a.	Initial: $[OH^{-}] = 0.1 \text{ M}$	[HA] = 1 M	
	Final: $[OH^-] = 0 M$	[HA] = <mark>0.9 M</mark>	$[A^{-}] = 0.1 M$
b.	Initial: $[OH^-] = 1 M$	[HA] = 1 M	
	Final: $[OH^-] = 0 M$	[HA] = <mark>0 M</mark>	$[A^{-}] = 1 M$
c.	Initial: $[OH^-] = 1 M$	[HA] = 0.1 M	
	Final: $[OH^{-}] = 0.9 M$	[HA] = <mark>0 M</mark>	$[A^{-}] = 0.1 M$

- Answer: Simple limiting reagent stuff. In a, OH- is the limiting reagent, in b, there is no limiting reagent (or both are, however you want to look at it), and in c, HA is the limiting reagent.
- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .

13. 1 M HCOOH and 1 M COOH

Answer: This is the definition of a buffer. $[H^+] = K_a(C_a/C_b) = 10^{-5}(1/1) = 10^{-5}$ **pH = 5**

14. 1 M HCOOH and 1 M NaOH

Answer: Neutralize. You end up with 1 M COOH⁻. This is not a buffer. It's a weak base. $[OH^{-}] = (K_bC_b)^{1/2} = [(10^{-14}/10^{-5})(1)]^{1/2}$ $= [10^{-9}]^{1/2} = 10^{-4.5}$ pOH = 4.5 **pH = 9.5**

15. 1 M HCOOH and 0.5 M NaOH

Answer: Neutralize. You end up with 0.5 M HCOOH and 0.5 M COOH⁻. This is a buffer. Notice that C_a/C_b is the same as in #13; so pH = 5.

16. 1 M HCl and 1 M HCOOH

Answer: This is a strong and a weak acid. This isn't a buffer. The weak acid doesn't matter.

$$[\mathbf{H}^+] = \mathbf{C}_{\mathbf{a}} = 1 \mathbf{M}$$
$$\mathbf{pH} = \mathbf{0}$$

17. 1 M HCl and 1 M COOH

Answer: Neutralize. You end up with 1 M HCOOH. This isn't a buffer, it's a weak acid. $[H^+] = (K_aC_a)^{1/2} = [(10^{-5})(1)]^{1/2} = 10^{-2.5}$ **pH = 2.5**

18. 1 M HCl and 5 M COOH

Answer: Neutralize. You end up with 4 M COOH- and 1 M HCOOH. This is a buffer. $[H^+] = K_a(C_a/C_b) = 10^{-5}(1/4) = 2.5 \times 10^{-6}$ $pH = -log(2.5 \times 10^{-6}) = 5.6$

19. 1 M HCl and 0.5 M COOH⁻

Answer: Neutralize. You end up with 0.5 M HCl and 0.5 M HCOOH. This is a strong acid/weak acid, not a buffer. [H+] = Ca = 0.5 MpH = -log(0.5) = 0.3

20. Write down the five types of neutralization reactions form MEMORY

Answer:

 $\begin{array}{l} H^{+} + OH^{-} \leftrightarrow H_{2}O \\ HA + OH^{-} \leftrightarrow H_{2}O + A^{-} \\ HB^{+} + OH^{-} \leftrightarrow H_{2}O + B \\ B + H^{+} \leftrightarrow BH^{+} \\ A^{-} + H + \leftrightarrow HA \end{array} \qquad (or B + H_{3}O^{+} \leftrightarrow BH^{+} + H_{2}O) \\ (or A^{-} + H_{3}O^{+} \leftrightarrow HA + H_{2}O) \end{array}$