- 1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?
- 2. You decide to titrate the solution in problem 1 against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?
- 3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?
- 4. You keep going until you've added 100 mL HCl. What is this final pH?
- 5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?
- 6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?
- 7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}
ZnS	2.0×10^{-25}
Ag_2S	1.0 x 10 ⁻⁴⁹
Fe(OH) ₃	6.3 x 10 ⁻³⁸
Fe_2S_3	1.4 x 10 ⁻⁸⁸

- 8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?
- 9. What if you'd dropped 10 kg of NaOH into the pool?
- 10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

a.	Initial: $[OH^-] = 0.1 \text{ M}$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
b.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
c.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 0.1 M [HA] = ?	[A ⁻] = ?

- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .
 - 13. 1 M HCOOH and 1 M COOH
 - 14. 1 M HCOOH and 1 M NaOH
 - 15. 1 M HCOOH and 0.5 M NaOH
 - 16. 1 M HCl and 1 M HCOOH
 - 17. 1 M HCl and 1 M COOH⁻
 - 18. 1 M HCl and 5 M COOH
 - 19. 1 M HCl and 0.5 M COOH⁻

- 1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?
- 2. You decide to titrate the solution in problem 1 against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?
- 3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?
- 4. You keep going until you've added 100 mL HCl. What is this final pH?
- 5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?
- 6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?
- 7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}
ZnS	2.0×10^{-25}
Ag_2S	1.0 x 10 ⁻⁴⁹
Fe(OH) ₃	6.3 x 10 ⁻³⁸
Fe_2S_3	1.4 x 10 ⁻⁸⁸

- 8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?
- 9. What if you'd dropped 10 kg of NaOH into the pool?
- 10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

a.	Initial: $[OH^-] = 0.1 \text{ M}$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
b.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
c.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 0.1 M [HA] = ?	[A ⁻] = ?

- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .
 - 13. 1 M HCOOH and 1 M COOH
 - 14. 1 M HCOOH and 1 M NaOH
 - 15. 1 M HCOOH and 0.5 M NaOH
 - 16. 1 M HCl and 1 M HCOOH
 - 17. 1 M HCl and 1 M COOH⁻
 - 18. 1 M HCl and 5 M COOH
 - 19. 1 M HCl and 0.5 M COOH⁻

- 1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?
- 2. You decide to titrate the solution in problem 1 against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?
- 3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?
- 4. You keep going until you've added 100 mL HCl. What is this final pH?
- 5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?
- 6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?
- 7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}
ZnS	2.0×10^{-25}
Ag_2S	1.0 x 10 ⁻⁴⁹
Fe(OH) ₃	6.3 x 10 ⁻³⁸
Fe_2S_3	1.4 x 10 ⁻⁸⁸

- 8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?
- 9. What if you'd dropped 10 kg of NaOH into the pool?
- 10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

a.	Initial: $[OH^-] = 0.1 \text{ M}$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
b.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
c.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 0.1 M [HA] = ?	[A ⁻] = ?

- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .
 - 13. 1 M HCOOH and 1 M COOH
 - 14. 1 M HCOOH and 1 M NaOH
 - 15. 1 M HCOOH and 0.5 M NaOH
 - 16. 1 M HCl and 1 M HCOOH
 - 17. 1 M HCl and 1 M COOH⁻
 - 18. 1 M HCl and 5 M COOH
 - 19. 1 M HCl and 0.5 M COOH⁻

- 1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?
- 2. You decide to titrate the solution in problem 1 against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?
- 3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?
- 4. You keep going until you've added 100 mL HCl. What is this final pH?
- 5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?
- 6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?
- 7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}
ZnS	2.0×10^{-25}
Ag_2S	1.0 x 10 ⁻⁴⁹
Fe(OH) ₃	6.3 x 10 ⁻³⁸
Fe_2S_3	1.4 x 10 ⁻⁸⁸

- 8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?
- 9. What if you'd dropped 10 kg of NaOH into the pool?
- 10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

a.	Initial: $[OH^-] = 0.1 \text{ M}$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
b.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
c.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 0.1 M [HA] = ?	[A ⁻] = ?

- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .
 - 13. 1 M HCOOH and 1 M COOH
 - 14. 1 M HCOOH and 1 M NaOH
 - 15. 1 M HCOOH and 0.5 M NaOH
 - 16. 1 M HCl and 1 M HCOOH
 - 17. 1 M HCl and 1 M COOH⁻
 - 18. 1 M HCl and 5 M COOH
 - 19. 1 M HCl and 0.5 M COOH⁻

- 1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?
- 2. You decide to titrate the solution in problem 1 against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?
- 3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?
- 4. You keep going until you've added 100 mL HCl. What is this final pH?
- 5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?
- 6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?
- 7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}
ZnS	2.0×10^{-25}
Ag_2S	1.0 x 10 ⁻⁴⁹
Fe(OH) ₃	6.3 x 10 ⁻³⁸
Fe_2S_3	1.4 x 10 ⁻⁸⁸

- 8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?
- 9. What if you'd dropped 10 kg of NaOH into the pool?
- 10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

a.	Initial: $[OH^-] = 0.1 \text{ M}$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
b.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
c.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 0.1 M [HA] = ?	[A ⁻] = ?

- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .
 - 13. 1 M HCOOH and 1 M COOH
 - 14. 1 M HCOOH and 1 M NaOH
 - 15. 1 M HCOOH and 0.5 M NaOH
 - 16. 1 M HCl and 1 M HCOOH
 - 17. 1 M HCl and 1 M COOH⁻
 - 18. 1 M HCl and 5 M COOH
 - 19. 1 M HCl and 0.5 M COOH⁻

- 1. You have a 750 mL solution of 0.1 M methylamine. You can't find the K_b for methylamine but notice that the K_a for its conjugate acid is 1 x 10⁻⁹. What is the pH of the methylamine solution?
- 2. You decide to titrate the solution in problem 1 against 1 M hydrochloric acid. When you've added 25 mL of the HCl to the solution, what is the pH?
- 3. You continue the titration. What is the pH when you've added 75 mL HCl total? What is this point called?
- 4. You keep going until you've added 100 mL HCl. What is this final pH?
- 5. AgCl has a K_{sp} of 1.77 x 10⁻¹⁰. What is the molar solubility of AgCl?
- 6. $Mg_3(PO_4)_2$ has a K_{sp} of 9.86 x 10⁻²⁵. What is the molar solubility of $Mg_3(PO_4)_2$?
- 7. Given the following compounds and K_{sp} values, rank the compounds from most to least soluble.

Compound	K _{sp}
ZnS	2.0×10^{-25}
Ag_2S	1.0 x 10 ⁻⁴⁹
Fe(OH) ₃	6.3 x 10 ⁻³⁸
Fe_2S_3	1.4 x 10 ⁻⁸⁸

- 8. You drop 0.1 g of solid NaOH in an Olympic-sized swimming pool full of pure water (volume = $2.5 \times 10^6 \text{ L}$). What is the pH of the pool?
- 9. What if you'd dropped 10 kg of NaOH into the pool?
- 10. List the assumptions that must be true for us to obtain reasonably accurate answers when using equations like $[H^+] = C_a$ or $[OH^-] = (K_b C_b)^{0.5}$.

a.	Initial: $[OH^-] = 0.1 \text{ M}$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
b.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 1 M [HA] = ?	[A ⁻] = ?
c.	Initial: $[OH^-] = 1 M$ Final: $[OH^-] = ?$	[HA] = 0.1 M [HA] = ?	[A ⁻] = ?

- 13-19. State whether the given mixture forms a buffer (hint: you may have to neutralize first). Whether it does or not, calculate the pH. K_a for HCOOH = 10^{-5} .
 - 13. 1 M HCOOH and 1 M COOH
 - 14. 1 M HCOOH and 1 M NaOH
 - 15. 1 M HCOOH and 0.5 M NaOH
 - 16. 1 M HCl and 1 M HCOOH
 - 17. 1 M HCl and 1 M COOH⁻
 - 18. 1 M HCl and 5 M COOH
 - 19. 1 M HCl and 0.5 M COOH⁻