Laude CH 302Spring 2006 Worksheet 6

(To make your life easier when working the problems, convert the compounds in the problems below to H^{+}, $\mathrm{OH}^{-}, \mathrm{HA}, \mathrm{A}^{-}, \mathrm{B}$, or BH^{+}when you are struggling.)

Neutralization

1. Write the balanced neutralization reactions and then calculate the final amount of each compound in solution after neutralization:
a. 2 mol NaHCOO and 1 mol HCl

\[

\]

b. $1 \mathrm{~mol} \mathrm{HNO}_{3}$ and 1.5 mol KOH

	$\mathrm{HNO}_{3}+\mathrm{KOH} \leftrightarrow$	$\mathrm{KNO} 3+\mathrm{H} 2 \mathrm{O}$	
	$\mathrm{H}^{+}+$	OH^{-}	\leftrightarrow

c. $5 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}$ and 1 mol HI

	$\mathrm{NH}_{4} \mathrm{NO}_{2}+\mathrm{HI}$	\leftrightarrow	no reaction
$\mathrm{BH}^{+}+$	H^{+}	\leftrightarrow	no reaction acid and acid
Final	0.5	1	

d. $0.7 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ and $.5 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$

$$
\begin{array}{clc}
2 \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl} \\
\mathrm{BH}^{+}+ & \mathrm{Ca}(\mathrm{OH})_{2} \leftrightarrow & \mathrm{OH}^{-} \leftrightarrow \\
0 & . .3 & \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
0 & .7
\end{array}
$$

Final

Simple buffers

2. Identify buffer solutions. Remember to neutralize when necessary.
a. 1.5 M acetic acid solution $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and .5 M potassium acetate yes
b. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and 1 M HCl yes, after neutralization
c. .02 M lactic acid and 1 M HCl
no strong acid is left
d. $1.5 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ and $1 \mathrm{M} \mathrm{BaCl}_{2}$
no
e. 1.0 M NaOH and 2 M hydrazine bromide $\left(\mathrm{NH}_{3} \mathrm{NH}_{3} \mathrm{Br}\right)$
yes, after neutralization
f. $1.0 \mathrm{M} \mathrm{HNO}_{3}$ and 2.0 M sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$
yes, after neutralization
g. $1.0 \mathrm{M} \mathrm{HNO}_{3}$ and 2.0 M sodium sulfate
yes, after neutralization
h. 1 M ammonia and 2 M ammonium nitrate
yes, after neutralization
3. Write out the equation and then calculate the pH of these solutions:
a. $1.5 \mathrm{M} \mathrm{NaNO}_{2}$ and $.5 \mathrm{M} \mathrm{HNO}_{2} \quad \mathrm{~K}_{\mathrm{a}}=4.3 \times 10^{-4}$
1.5 moles A- and 0.5 moles HA

Use simple acid buffer equation $\mathrm{pH}=3.84$
b. 1 M ammonia and 2 M ammonium nitrate $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

1 mole B to 2 moles of $\mathrm{BH}+$
Use simple basic buffer equation $\mathrm{pOH}=5.05 \mathrm{pH}=8.95$
c. $3 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ and $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-5}$

A- $+\mathrm{H}+\quad \leftrightarrow \quad \mathrm{HA}$
Before 3 moles 2 moles
After 1 mole 0 moles 2 moles
so simple acid buffer is left after neutralization $\quad \mathrm{pH}=4.44$
d. $2 \mathrm{M} \mathrm{Na}_{\mathrm{s}} \mathrm{SO} 4$ and $1 \mathrm{M} \mathrm{HF} \quad \mathrm{K}_{\mathrm{a}}=4.3 \times 10^{-4}$
not a simple buffer, no conjugate acid/base system present

Titration curve

Titration curve
4. Calculate the pH of these solutions after titration, then draw their titration curves:
a. 100 ml .5 M NaOH and 150 ml .5 M HBr

Total volume $=250 \mathrm{ml}$
$[\mathrm{H}+]$ final $=, 1 \mathrm{M}$
$\mathrm{pH}=1$

b. Equal amounts of $2 \mathrm{M} \mathrm{NH}_{3}$ and $2 \mathrm{M} \mathrm{HNO}_{3}, \mathrm{Ka}^{\text {of }} \mathrm{NH}_{4}+=5.55 \mathrm{e}-10$
$\left[\mathrm{NH}_{4}+\right]=2 \mathrm{M}$
$\mathrm{pH}=4.5$

c. Equal amounts of 1.5 M HI and $1.5 \mathrm{M} \mathrm{KClO}, \mathrm{Kb}$ of $\mathrm{ClO}-=3.33 \mathrm{e}-7$
$[\mathrm{ClO}-]=1.5 \mathrm{M}$
$\mathrm{pOH}=7.1$
$\mathrm{pH}=13.9$

5. Write out the equation expressions and calculate total $\left[\mathrm{H}^{+}\right]$and pH of these solutions. In each case assume the simple (single K) eqilibria:
a. $1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{~K} 1=4.3 \mathrm{e}-7$ and $\mathrm{K} 2=5.6 \mathrm{e}-11$

$$
\begin{align*}
& \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{HCO}^{3}-+\mathrm{H}+ \tag{1}\\
& \mathrm{HCO}_{3^{-}} \leftrightarrow \mathrm{CO}^{32-}+\mathrm{H}+ \tag{2}
\end{align*}
$$

Since initial concentration of acid is large and both Ks are small and far apart, we use approximations for both [$\mathrm{H}+$] calculations.
From (1), $[\mathrm{H}+]=7.2 \mathrm{e}-4 \mathrm{M}$
From (2), $[\mathrm{H}+]=2 \mathrm{e}-7 \mathrm{M}$
Total $[\mathrm{H}+]=7.202 \mathrm{e}-4 \mathrm{M}$
$\mathrm{pH}=3.14$
b. $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~K} 1=$ strong, $\mathrm{K} 2=1.2 \mathrm{e}-2$
$\mathrm{H}_{2} \mathrm{SO}_{4} \leftrightarrow \mathrm{HSO}_{4}{ }^{-}+\mathrm{H}+$
$\mathrm{HSO}_{4}{ }^{-} \leftrightarrow \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}+$
Since initial concentration of acid is large and second K is small, we use approximations on the second $[\mathrm{H}+]$ calculation.
From (1), $[\mathrm{H}+]=2 \mathrm{M}$
From (2), $[\mathrm{H}+]=.15 \mathrm{M}$
Total $[\mathrm{H}+]=2.15 \mathrm{M}$
$\mathrm{pH}=-.33$

Approximation vs. solving quadratic equation

6. Fill in the blank:

Acid/base equilibrium	K_{a}	$\left[\mathrm{H}^{+}\right]$approximation	$\left[\mathrm{H}^{+}\right]$quadratic	Approximate?
$.001 \mathrm{M} \mathrm{HF} \leftrightarrow \mathrm{H}^{+}+\mathrm{F}^{-}$	4.5×10^{-3}	.002	.00084	no
$.3 \mathrm{M} \mathrm{HSO}_{4}-\leftrightarrow \mathrm{H}^{+}+\mathrm{SO}_{4}^{-}$	1.2×10^{-2}	.06	.05	no
$.01 \mathrm{M} \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow$ $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	1.8×10^{-5}	.000424	.0004153	Maybe yes
$3 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow$ $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$	1.8×10^{-5}	.00536	.005357	Yes

