#### Laude CH 302Spring 2006 Worksheet 6

(To make your life easier when working the problems, convert the compounds in the problems below to  $H^+$ , OH<sup>-</sup>, HA, A<sup>-</sup>, B, or BH<sup>+</sup> when you are struggling.)

## Neutralization

1. Write the balanced neutralization reactions and then calculate the final amount of each compound in solution after neutralization:

a. 2 mol NaHCOO and 1mol HCl

 $\begin{array}{ccc} \text{NaHCOO} + \text{HCl} \leftrightarrow \text{HCOOH} + \text{NaCl} \\ \text{A}^{-} & \text{H}^{+} \leftrightarrow \text{HA} \\ \text{Final:} & 1\text{mol} & 0 & 1\text{mol} \end{array}$ 

b. 1 mol  $HNO_3$  and 1.5 mol KOH

 $\begin{array}{rcrcr} HNO_3 + KOH \leftrightarrow & KNO3 + H2O \\ H^+ & + & OH^- \leftrightarrow & H2O \\ Final & 0 & 0.5 & 1 \end{array}$ 

c. 5 mol  $NH_4NO_2$  and 1 mol HI

 $\begin{array}{ccc} NH_4NO_2 \ + HI \\ BH^+ \ + & H^+ \\ Final \ 0.5 \ 1 \end{array} \leftrightarrow \mbox{no reaction acid and acid} \end{array}$ 

d. 0.7 mol CH<sub>3</sub>NH<sub>3</sub>Cl and .5 mol Ca(OH)<sub>2</sub>

 $\begin{array}{ccc} 2CH_{3}NH_{3}Cl+Ca(OH)_{2}\leftrightarrow 2CH_{3}NH_{2}+CaCl_{2}+2H_{2}O\\ BH^{+}+&OH^{-}\leftrightarrow &B\\ Final & 0&..3&.7 \end{array}$ 

## Simple buffers

2. Identify buffer solutions. Remember to neutralize when necessary.

- a. 1.5 M acetic acid solution (CH<sub>3</sub>COOH) and .5M potassium acetate yes
- b. 2 M Na<sub>2</sub>CO<sub>3</sub> solution and 1 M HCl yes, after neutralization
- c. .02 M lactic acid and 1M HCl no strong acid is left
- d. 1.5 M Ba(OH)<sub>2</sub> and 1 M BaCl<sub>2</sub>
- e. 1.0 M NaOH and 2 M hydrazine bromide (NH<sub>3</sub>NH<sub>3</sub>Br) yes, after neutralization
- f. 1.0 M HNO<sub>3</sub> and 2.0 M sodium acetate (NaCH<sub>3</sub>COO) yes, after neutralization
- g. 1.0 M HNO<sub>3</sub> and 2.0 M sodium sulfate yes, after neutralization

h. 1 M ammonia and 2 M ammonium nitrate yes, after neutralization

- 3. Write out the equation and then calculate the pH of these solutions:
  - a. 1.5M NaNO<sub>2</sub> and .5 M HNO<sub>2</sub>  $K_a = 4.3 \times 10^{-4}$ 1.5 moles A- and 0.5 moles HA Use simple acid buffer equation pH = 3.84
  - b. 1M ammonia and 2M ammonium nitrate  $K_b = 1.8 \times 10^{-5}$ 1 mole B to 2 moles of BH+ Use simple basic buffer equation pOH = 5.05 pH = 8.95

c. 3 M NaCH<sub>3</sub>COO and 1 M H<sub>2</sub>SO<sub>4</sub>  $K_a = 1.8 \times 10^{-5}$ A- + H+  $\leftrightarrow$  HA Before 3moles 2 moles After 1 mole 0 moles 2 moles

so simple acid buffer is left after neutralization pH = 4.44

d. 2 M Na<sub>s</sub>SO4 and 1M HF  $K_a = 4.3 \times 10^{-4}$  not a simple buffer, no conjugate acid/base system present

#### **Titration curve**

Titration curve

 Calculate the pH of these solutions after titration, then draw their titration curves: a. 100ml .5M NaOH and 150ml .5M HBr



5. Write out the equation expressions and calculate total  $[H^+]$  and pH of these solutions. In each case assume the simple (single K) eqilibria:

a. 1.2 M  $H_2CO_3$ , K1 = 4.3e-7 and K2 = 5.6e-11

| $H_2CO_3 \leftrightarrow HCO^3 - + H+$ | (1) |
|----------------------------------------|-----|
| $HCO_3- \leftrightarrow CO^{32-} + H+$ | (2) |

Since initial concentration of acid is large and both Ks are small and far apart, we use approximations for both [H+] calculations.

From (1), [H+] = 7.2 e-4 MFrom (2), [H+] = 2e-7 MTotal [H+] = 7.202 e-4 MpH = 3.14 b. 2 M H<sub>2</sub>SO<sub>4</sub>, K1= strong, K2 = 1.2 e-2 H<sub>2</sub>SO<sub>4</sub>  $\leftrightarrow$  HSO<sub>4</sub><sup>-</sup> + H+ (1) HSO<sub>4</sub><sup>-</sup>  $\leftrightarrow$  SO<sub>4</sub><sup>2-</sup> + H+ (2) Since initial concentration of acid is large and second

Since initial concentration of acid is large and second K is small, we use approximations on the second [H+] calculation.

From (1), [H+] = 2M From (2), [H+] = .15M Total [H+] = 2.15M pH = -.33

# Approximation vs. solving quadratic equation

6. Fill in the blank:

| Acid/base equilibrium                                                                             | Ka                     | [H <sup>+</sup> ] approximation | [H <sup>+</sup> ] quadratic | Approximate? |
|---------------------------------------------------------------------------------------------------|------------------------|---------------------------------|-----------------------------|--------------|
| $.001M \text{ HF} \leftrightarrow \text{H}^+ + \text{F}^-$                                        | 4.5 x 10 <sup>-3</sup> | .002                            | .00084                      | no           |
| $.3M \operatorname{HSO}_{4^{-}} \leftrightarrow \operatorname{H}^{+} + \operatorname{SO}_{4^{-}}$ | 1.2 x 10 <sup>-2</sup> | .06                             | .05                         | no           |
| $.01M NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$                                                  | 1.8 x 10 <sup>-5</sup> | .000424                         | .0004153                    | Maybe yes    |
| $3 \text{ M CH}_{3}\text{COOH} \leftrightarrow \\ \text{CH}_{3}\text{COO}^{-} + \text{H}^{+}$     | 1.8 x 10 <sup>-5</sup> | .00536                          | .005357                     | Yes          |