Laude CH 302 Spring 2006 Worksheet 6

{To make your life easier when working the problems, convert the compounds in the problems below to H⁺, OH⁻, HA, A⁻, B, or BH⁺ when you are struggling.)

Neutralization

- 1. Write the balanced neutralization reactions and then calculate the final amount of each compound in solution after neutralization:
 - a. 2 mol NaHCOO and 1mol HCl
 - b. 1 mol HNO₃ and 1.5 mol KOH
 - c. 5 mol NH₄NO₂ and 1 mol HI
 - d. 0.7 mol CH₃NH₃Cl and .5 mol Ca(OH)₂

Simple buffers

- 2. Identify buffer solutions. Remember to neutralize when necessary.
 - a. 1.5 M acetic acid solution (CH₃COOH) and .5M potassium acetate
 - b. 2 M Na₂CO₃ solution and 1 M HCl
 - c. .02 M lactic acid and 1M HCl
 - d. 1.5 M Ba(OH)₂ and 1 M BaCl₂
 - e. 1.0 M NaOH and 2 M hydrazine bromide (NH₃NH₃Br)
 - f. 1.0 M HNO₃ and 2.0 M sodium acetate (NaCH₃COO)
 - g. 1.0 M HNO₃ and 2.0 M sodium sulfate
 - h. 1 M ammonia and 2 M ammonium nitrate
- 3. Write out the equation and then calculate the pH of these solutions:
 - a. 1.5M NaNO₂ and .5 M HNO₂ $K_a = 4.3 \times 10^{-4}$
 - b. 1M ammonia and 2M ammonium nitrate $K_b = 1.8 \times 10^{-5}$
 - c. 3 M NaCH₃COO and 1 M H₂SO₄ $K_a = 1.8 \times 10^{-5}$
 - d. 2 M Na_sSO4 and 1M HF $K_a = 4.3 \times 10^{-4}$

Titration curve

- 4. Draw the titration curve for each of these reactions and then calculate the pH of these solutions at neutralization.
 - a. 100ml .5M NaOH and 150ml .5M HBr
 - b. Equal amounts of 2M NH $_3$ and 2M HNO $_3$, K_a of NH $_4^+$ = 5.55 x 10^{-10}
 - c. Equal amounts of 1.5M HI and 1.5 M KClO, K_b of $ClO^- = 3.33 \times 10^{-7}$

Polyprotic acid equilibria

- 5. Write out the equation expressions and calculate total $[H^+]$ and pH of these solutions. In each case assume the simple (single K) eqilibria:
 - a. 1.2 M H_2CO_3 , $K_1 = 4.3 \times 10^{-7}$ and $K_2 = 5.6 \times 10^{-11}$
 - b. 2 M H_2SO_4 , K_1 = strong, K_2 = 1.2 x 10^{-2}

Approximation vs. solving quadratic equation

6. Fill in the bank:

Acid/base	Ka	[H+] using approximation (M)	[H+] by quadratic equation (M)	I
$.001M \text{ HF} \leftrightarrow \text{H}^+ + \text{F}^-$	4.5 x 10 ⁻³			
$.3M HSO_{4^{-}} \leftrightarrow H^{+} + SO_{4^{-}}$	1.2 x 10 ⁻²			
$.01M \text{ NH}_3 + \text{H}_2\text{O} \leftrightarrow \text{NH}_4^+ + \text{OH}^-$	1.8 x 10 ⁻⁵			
3 M CH ₃ COOH ↔ CH ₃ COO + H ⁺	1.8 x 10 ⁻⁵			