Laude CH 302 Spring 2006 Worksheet 6

\{To make your life easier when working the problems, convert the compounds in the problems below to H^{+}, $\mathrm{OH}^{-}, \mathrm{HA}, \mathrm{A}^{-}, \mathrm{B}$, or BH^{+}when you are struggling.)

Neutralization

1. Write the balanced neutralization reactions and then calculate the final amount of each compound in solution after neutralization:
a. 2 mol NaHCOO and 1 mol HCl
b. $1 \mathrm{~mol} \mathrm{HNO}_{3}$ and 1.5 mol KOH
c. $5 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}$ and 1 mol HI
d. $0.7 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}$ and $.5 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$

Simple buffers

2. Identify buffer solutions. Remember to neutralize when necessary.
a. 1.5 M acetic acid solution $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and .5 M potassium acetate
b. $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and 1 M HCl
c. .02 M lactic acid and 1 M HCl
d. $1.5 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ and $1 \mathrm{M} \mathrm{BaCl}_{2}$
e. 1.0 M NaOH and 2 M hydrazine bromide $\left(\mathrm{NH}_{3} \mathrm{NH}_{3} \mathrm{Br}\right)$
f. $1.0 \mathrm{M} \mathrm{HNO}_{3}$ and 2.0 M sodium acetate $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$
g. $1.0 \mathrm{M} \mathrm{HNO}_{3}$ and 2.0 M sodium sulfate
h. 1 M ammonia and 2 M ammonium nitrate
3. Write out the equation and then calculate the pH of these solutions:
a. $1.5 \mathrm{M} \mathrm{NaNO}_{2}$ and $.5 \mathrm{M} \mathrm{HNO}_{2} \quad \mathrm{~K}_{\mathrm{a}}=4.3 \times 10^{-4}$
b. 1 M ammonia and 2 M ammonium nitrate $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$
c. $3 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ and $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}
$$

d. $2 \mathrm{M} \mathrm{Na}_{\mathrm{s}} \mathrm{SO} 4$ and $1 \mathrm{M} \mathrm{HF} \quad \mathrm{K}_{\mathrm{a}}=4.3 \times 10^{-4}$

Titration curve

4. Draw the titration curve for each of these reactions and then calculate the pH of these solutions at neutralization.
a. 100 ml .5 M NaOH and 150 ml .5 M HBr
b. Equal amounts of $2 \mathrm{M} \mathrm{NH}_{3}$ and $2 \mathrm{M} \mathrm{HNO}_{3}, \mathrm{~K}_{\mathrm{a}}$ of $\mathrm{NH}_{4}^{+}=5.55 \times 10^{-10}$
c. Equal amounts of 1.5 M HI and $1.5 \mathrm{M} \mathrm{KClO}, \mathrm{K}_{\mathrm{b}}$ of $\mathrm{ClO}^{-}=3.33 \times 10^{-7}$

Polyprotic acid equilibria

5. Write out the equation expressions and calculate total $\left[\mathrm{H}^{+}\right]$and pH of these solutions. In each case assume the simple (single K) eqilibria:
a. $1.2 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{1}=4.3 \times 10^{-7}$ and $\mathrm{K}_{2}=5.6 \times 10^{-11}$
b. $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{1}=$ strong, $\mathrm{K}_{2}=1.2 \times 10^{-2}$

Approximation vs. solving quadratic equation

6. Fill in the bank:

Acid/base	K_{a}	[$\mathrm{H}+$] using approximation (M)	[H+] by quadratic equation (M)	
. $001 \mathrm{M} \mathrm{HF} \leftrightarrow \mathrm{H}^{+}+\mathrm{F}^{-}$	4.5×10^{-3}			
$\begin{aligned} & .3 \mathrm{M} \mathrm{HSO}_{4-} \leftrightarrow \mathrm{H}^{+}+ \\ & \mathrm{SO}_{4}^{-} \end{aligned}$	1.2×10^{-2}			
$\begin{aligned} & .01 \mathrm{M} \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \\ & \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \end{aligned}$	1.8×10^{-5}			
$\begin{aligned} & 3 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \\ & \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \end{aligned}$	1.8×10^{-5}			

