CH302 Worksheet 5 Answer Key: A charming calculator-free worksheet concerning K_{sp}, K_w, K_a & K_b and strong acids and bases.

1. Define K_{sp} for the dissolution of the following salts in water. If necessary, write a balanced chemical equation for the dissolution first.

a. RbI, RbI(s) \Rightarrow Rb⁺(ag) + I⁻(aq), K_{sp} = [Rb⁺]·[I⁻] b. Ca(NO₃)₂, K_{sp} = [Ca²⁺]·[NO₃⁻]² c. K₃PO₄, K_{sp} = [K⁺]³·[PO₄³⁻] d. SrS, K_{sp} = [Sr²⁺]·[S²⁻] e. Fe₂(SO₄)₃, K_{sp} = [Fe³⁺]²·[SO₄²⁻]³ f. K₃Fe(C₂O₄)₃, K_{sp} = [K⁺]³·[Fe³⁺]·[C₂O₄²⁻]³

2. Consider each of the salts below. Express each salt's molar solubility (we'll call it x) in terms of K_{sp} . It might be useful to first write a balanced equation for each salt's dissolution and complete a RICE diagram. 1/5

	a. Cu ₃ (PO ₄) ₂ , molar solubility = x = $(K_{sp}/108)^{1/5}$							
	R	Cu ₃ (PO ₄) ₂ (s)	↓	3 Cu ²⁺ (aq)	+	2 PO4 ³⁻ (aq)		
	I	~		0		0		
	С	~		+ 3x		+2x		
	Е	~		3x		2x		
	$K_{sp} = [Cu^{2+}]^{3} \cdot [PO_{4}^{3-}]^{2} = (3x)^{3} \cdot (2x)^{2} = 108x^{5}$ $K_{sp} = 108x^{5}$ $x = (K_{sp}/108)^{1/5}$							
	$K_{sp} = 108x^5$							
$x = (K_{sp}/108)^{1/5}$								
	b. MgSe, $x = (K_{sp})^{1/2}$ c. Li3PO4, $x = (K_{sp}/27)^{1/4}$							
	$C_{12}PO_{4} = (K_{ep}/27)^{1/4}$							

c. Li₃PO₄, x = $(K_{sp}/27)^{1/4}$ d. K₃Fe(C₂O₄)₃, x = $(K_{sp}/729)^{1/7}$

3. Estimate the actual molar solubilities of the following salts in water based on their K_{sp} values.

- a. Barium Sulfate, BaSO₄, K_{sp} = 1.08×10^{-10} , molar solubility = $x \approx 10^{-5}$ M b. Cadmium Phosphate, Cd₃(PO₄)₂, K_{sp} = 2.53×10^{-33} , $x \approx 10^{-6}$ M c. Lithium Carbonate, Li₂CO₃, K_{sp} = 1.73×10^{-3} , $x \approx 10^{-1}$ M

d. Magnesium Ammonium Phosphate, MgNH₄PO₄, $K_{sp} = 2.5 \times 10^{-13}$, $x \approx 10^{-4}$ M

4. Estimate the actual molar solubilities of the following salts in the following solutions based on the provided concentrations and Ksp values. It might be useful to first write a

balanced equation for each salt's dissolution and complete a RICE diagram. a. Mercuric Bromide, HgBr₂, $K_{sp} = 8 \times 10^{-20}$, in 2 M Hg(NO₃)₂, molar solubility = x = 10^{-10} M

R	HgBr ₂ (s)	⇆	Hg ²⁺ (aq)	+	Br⁻(aq)
I	~		2		0
С	~		+ x		+2x
E	~		2 + 3x		2x

 $K_{sp} = [Hg^{2+}] \cdot [Br^{-}]^{2}$ 8 x10⁻²⁰ = (2 + 3x) \cdot (2x)^{2}

For the term (2 + 3x), it is safe to assume that $2 + 3x \approx 2$, and the equation reduces to $8 \times 10^{-20} = (2) \cdot (2x)^2$ 10

$$x = (8 \times 10^{-20}/8)^{1/2} = 10^{-10} M$$

b. Silver Chloride, AgCl, $K_{sp} = 1.56 \times 10^{-10}$, in 15 M KCl, $x = 10^{-11}$ M c. Barium Iodate, Ba(IO₃)₂, $K_{sp} = 6.5 \times 10^{-10}$, in 2.5 M KIO₃, $x = 10^{-10}$ M

5. Match the K_w values on the left with their corresponding pH values on the right. Assume you have a sample of completely pure water.

- 6. Answer the following questions concerning the autoprotolysis of water;
 - a. Is the autoprotolysis of water endothermic or exothermic? endothermic
 - b. What would be a simple experiment to verify this? Measuring the pH of a sample of pure water at different temperatures - pH will be

inversely proportional to temperature if autoprotolysis is endothermic.

c. What would be a simple way to calculate $\Delta H_{autoprotolysis}$?

Similar to above, measureing pH at a range of temperatures would enable us to compute K_w at those temperatures and we could then use the van't Hoff equation.

7. List the 7 strong acids from memory.

Hydrochloric (HCl), Hydrobromic (HBr), Hydroiodic (HI), Sulfuric (H₂SO₄), Nitric (HNO₃), Chloric (HClO₃) and Perchloric (HClO₄)

8. List the 8 strong bases from memory.

Lithium Hydroxide (LiOH), Sodium Hydroxide (NaOH), Potassium Hydroxide (KOH), Rubidium Hydroxide (RbOH), Cesium Hydroxide (CsOH), Calcium Hydroxide [Ca(OH)₂], Strontium Hydroxide [Sr(OH)₂], Barium Hydroxide [Ba(OH)₂]

9. List the 14 spectator ions from memory. The answers to questions 7 and 8 are a **really** good starting point for this problem.

Chloride (Cl-), Bromide (Br-), Iodide (I-), Nitrate (NO₃⁻), Chlorate (ClO₃⁻), Perchlorate (ClO₄⁻), Lithium ion (Li⁺), Sodium ion (Na⁺), Potassium ion (K⁺), Rubidium ion (Rb⁺), Cesium ion (Ce⁺), Calcium ion (Ca²⁺), Strontium ion (Sr²⁺), Barium ion (Ba²⁺)

10. Decide whether each of the species below is a weak acid or weak base. Note that it is possible to know this based on a chemical's name, and generally possible based on its formula.

- a. pyridinium, weak acid
- b. oxalate, weak base
- c. HIO₃, weak acid
- d. NH₃, weak base

e. formic acid, weak acid f. hydrazine, weak base

g ClO⁻ weak base h. NH⁴⁺, weak acid

11. Complete the following table: (Hint: $-\log 0.4 = 0.4$, this is a good and easy reference point to remember for the log function.)

	[H ⁺] (M)	pH	[OH ⁻] (M)	рОН
Solution A	0.4	0.4	2.5 ×10 ⁻¹⁴	13.6
Solution B	1	0	10 ⁻¹⁴	14
Solution C	10 ⁻¹³	13	0.1	1
Solution D	0.01	2	10 ⁻¹²	12
Solution E	10 ⁻¹⁵	15	10	-1
Solution F	10 ⁻¹¹	11	0.001	3
Solution G	10 ⁻⁵	5	10 ⁻⁹	9
Solution H	2.5 x10 ⁻¹⁴	13.6	0.4	0.4
Solution I	10 ⁻⁷	7	10 ⁻⁷	7
Solution J	10 ⁻⁹	9	10 ⁻⁵	5

12. What would be the pH of the following solutions?

- a. 0.01 M HClO₄, for a strong acid $[H^+] = C_a$, $-log[H^+] = pH = 2$
- b. 0.05 M Ba(OH)₂, note that some strong bases yield 2 OH⁻, pH = 13
- c. 10 M HNO₃, pH = -1
- d. 10 LiOH, pH = 15

13. What would be the pOH pf the following solutions?

- a. 0.1 M RbOH, for a strong base $[OH^-] = C_b$, $-log[OH^-] = pOH = 1$
- b. 0.5 M Sr(OH)₂, note that some strong bases yield 2 OH^- , pOH = 0
- c. 0.001 M HClO₃, pOH = 11
- d. 0.4 M HI, pOH = 13.6

14. What would be the pH of the following solutions? You may approximate if necessary;

you should not need a calculator. a. 0.25 M HNO₂, $K_a = 4.0 \times 10^{-4}$, for a weak acid $[H^+] = (K_a \cdot C_a)^{1/2}$, pH = 2 b. 5.55 M NH₃, $K_b = 1.8 \times 10^{-5}$, for a weak base $[OH^-] = (K_b \cdot C_b)^{1/2}$, pH = 12 c. 0.0125 M ascorbic acid, $K_a = 7.9 \times 10^{-5}$, pH = 3 d. 0.0135 M trimethylamine, $K_b = 7.4 \times 10^{-5}$, pH = 11 e. 0.3 M HOCI, K_a = 3.5 x10⁻⁸, pH = 4

15. Consider each of the acids and bases below. Write the formula or name for each species'

conjugate and calculate the K_a or K_b for that conjugate. Approximate if necessary. a. ammonium, K_a = 5.55×10^{-10} , ammonia, K_b = 1.80×10^{-5} b. OCl⁻, K_b = 2.5×10^{-7} , HOCl, K_a = 4.0×10^{-8} c. pyridine, K_b = 1.6×10^{-9} , pyridinium, K_a = 6.0×10^{-6} d. HCN, K_a = 4.0×10^{-10} , CN⁻, K_b = 2.5×10^{-5}