CH 302 Spring 2007 Worksheet 4 Practice Exam 1

- 1. Predict the signs of ΔH and ΔS for the sublimation of CO₂.
 - a. $\Delta H > 0, \Delta S > 0$
 - b. $\Delta H > 0, \Delta S < 0$
 - c. $\Delta H < 0, \Delta S > 0$
 - d. $\Delta H < 0, \Delta S < 0$
- 2. Vapor pressure increases _____ with temperature.
 - a. Linearly
 - b. Exponentially
 - c. Logarithmically
 - d. Quadratically
- 3. Which of the following salts will dissolve most easily in water?
 - a. KBr
 - b. MgO
 - c. BN
 - d. LiF

- 4. For this question, refer to the phase diagram shown above. What is the phase of this substance at 56°C and 5.1 atm?
 - a. Solid
 - b. Liquid
 - c. Gas
 - d. Mixture of solid and gas
 - e. Mixture of solid, liquid, and gas
 - f. Supercritical fluid
- 5. For this question, refer to the phase diagram shown above question 4. The substance is originally held in a container at -60°C and 20 atm. It is then heated to room temperature, and next allowed to expand to atmospheric pressure. What happens to the substance?
 - a. The liquid in the container boils.
 - b. The liquid in the container becomes a supercritical fluid.
 - c. The gas in the container becomes a supercritical fluid.
 - d. The solid in the container sublimes.
 - e. The solid in the container melts, then the resulting liquid boils.
 - f. The solid in the container sublimes, and then the resulting gas condenses.

6. 1 kg of water starts at 200°C and is allowed to cool to room temperature. For water, the specific heats are $c_{ice} = 2.093 \text{ J/g}^{\circ}\text{C}$, $c_{water} = 4.186 \text{ J/g}^{\circ}\text{C}$, and $c_{steam} = 2.009 \text{ J/g}^{\circ}\text{C}$. The enthalpy changes are $\Delta H_{fusion} = -335.5 \text{ J/g}$ and $\Delta H_{vaporization} = 2.26 \text{ kJ/g}$. What is ΔH_{sys} for this process?

- a. -2775 J
- b. -2775 kJ
- c. +2775 kJ
- d. -1745 kJ
- e. +1745 kJ

7. Which of the following gases will be most soluble in water?

- a. CH₄
- b. O₂
- c. CCl₄
- d. He
- e. Cl₂
- 8. Rank the following in terms of increasing miscibility with water: CH₃OH, CH₄, CH₃CH₂OH, CH₃CH₂CH₂OH.
 - a. $CH_3CH_2CH_2OH < CH_3CH_2OH < CH_3OH < CH_4$
 - b. $CH_4 < CH_3OH < CH_3CH_2OH < CH_3CH_2OH$
 - c. $CH4 < CH_3CH_2CH_2OH < CH_3CH_2OH < CH_3OH$
 - d. $CH_3OH < CH_3CH_2OH < CH_3CH_2CH_2OH < CH_4$
- 9. You're cleaning your pet goldfish's tank, and you put him in a bowl containing pure water. Because the fish has a certain electrolyte balance inside its body that doesn't exist in the water, a concentration gradient is created. What is the name of the colligative property that explains why your fish blows up like a water balloon?
 - a. Vapor pressure
 - b. Freezing point depression
 - c. Boiling point elevation
 - d. Osmotic pressure
 - e. Density depression
 - f. Ion diffusion
- 10. 25 g of acetic acid (CH₃COOH) and 75 g of ethanol (CH₃CH₂OH) are mixed together. At 25°C, the vapor pressures of these compounds are 16 and 59 torr, respectively. What is the vapor pressure of the mixture?
 - a. 37.50 torr
 - b. 48.25 torr
 - c. 26.75 torr
 - d. 50.25 torr
 - e. 24.75 torr
- 11. Butanol boils at 118°C and has a ΔH_{vap} of 50 kJ/mol. What is butanol's vapor pressure at room temperature, 25°C? Recall that 1 atm = 760 torr and R = 8.314 J/mol K.
 - a. 6.28 torr
 - b. 91965 torr
 - c. 756.4 torr
 - d. 763.7 torr

- 12. 1 mol of each of the following is added to 1 L of water. Rank the solutions in terms of **increasing freezing point**. BaS, CaCl₂, sugar, LiCl.
 - a. $BaS < sugar < LiCl < BaCl_2$
 - b. $BaCl_2 < LiCl < sugar < BaS$
 - c. $sugar < BaS < LiCl < BaCl_2$
 - d. $BaCl_2 < LiCl < BaS < sugar$
- 13. Which of these is **not** an example of using a colligative property to your advantage?
 - a. Adding salt to water so that your spaghetti cooks faster.
 - b. Mixing ethylene glycol and water in your radiator so that the liquid remains liquid over a wide range of temperatures.
 - c. Cooking your spaghetti in a pressure cooker so that it cooks faster.
 - d. Salting the roads after it snows.
- 14. 20 g of BaCl₂ is added to 1 L of water ($d_{water} = 1 \text{ g/mL}$). What is the boiling point of the water, given the boiling point of pure water is 100°C and K_b for water is 0.512 °C/m?
 - a. 99.852°C
 - b. 100.148°C
 - c. 99.951°C
 - d. 100.0492°C
 - e. 89.760°C
 - f. 110.240°C

15. Which is the correct expression of K given the reaction NaCl (aq) + AgNO₃ (aq) \rightarrow NaNO₃ (aq) + AgCl (s)

$$\begin{split} \mathrm{K} &= \frac{[\mathrm{NaNO}_3][\mathrm{AgCI}]}{[\mathrm{NaCI}][\mathrm{AgNO}_3]}\\ \mathrm{a.} & \mathrm{K} &= \frac{[\mathrm{NaCI}][\mathrm{AgNO}_3]}{[\mathrm{NaNO}_3][\mathrm{AgCI}]}\\ \mathrm{b.} & \mathrm{K} &= \frac{[\mathrm{NaNO}_3]}{[\mathrm{NaNO}_3]}\\ \mathrm{c.} \end{split}$$

16. For the reaction below, 1 atm C_8H_{18} and 1 atm O_2 (and no CO_2 or H_2O) are mixed together. The equilibrium pressure of O_2 is 0.1 atm. What is K_p for this process?

 $2 \operatorname{C_8H_{18}}(g) + 25 \operatorname{O_2}(g) \leftrightarrow 16 \operatorname{CO_2}(g) + 18 \operatorname{H_2O}(g)$

- a. 4.02
- b. 0.25
- c. 1.45×10^{-18}
- d. 6.92×10^{17}
- e. 2.78×10^{25}
- 17. For some temperature, assume that K_p for the combustion reaction below is 10^5 . You mix 1 atm each of C₂H₅OH, O₂, H₂O, and CO₂. Which of the following is a possible set of equilibrium concentrations?

 $C_2H_5OH(g) + 3 O_2(g) \leftrightarrow 2 CO_2(g) + 3 H_2O(g)$

- a. $P_{C2H5O2} = 1.31$ atm, $P_{O2} = 1.92$ atm, $P_{CO2} = 0.390$ atm, $P_{H2O} = 0.0845$ atm
- b. $P_{C2H5O2} = 0.0652$ atm, $P_{O2} = 0.691$ atm, $P_{CO2} = 1.94$ atm, $P_{H2O} = 1.62$ atm
- c. $P_{C2H5O2} = 0.691$ atm, $P_{O2} = 0.0652$ atm, $P_{CO2} = 1.62$ atm, $P_{H2O} = 1.94$ atm
- d. $P_{C2H5O2} = 1.92$ atm, $P_{O2} = 1.31$ atm, $P_{CO2} = 0.0845$ atm, $P_{H2O} = 0.390$ atm

18. Calculate the equilibrium concentration of CO_2 , given that you start with 1 M each of CO, CO_2 , and H_2 in water, and $K_c = 223$.

$$CO(aq) + H_2O(l) \leftrightarrow CO_2(aq) + H_2(aq)$$

- a. 1.98 M
- b. 0.126 M
- c. 0.00893 M
- d. 1.87 M
- 19. For the formation of ammonia, imagine you start with 1.5 M N₂, 1 M H₂ and 2.5 M NH₃. Which way will the reaction shift, given $K_c = 3.8$?

$$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$$

- a. To the products.
- b. To the reactants.
- c. It won't.
- d. Up.
- e. Down.
- 20. An exothermic reaction is placed over a flame. What happens to the reaction?
 - a. Nothing happens.
 - b. The reaction shifts toward the reactants.
 - c. The reaction shifts toward the products.
- 21. The pressure on the vessel in which the following reaction is taking place is doubled. What happens to the reaction?

$$N_2(l) + O_2(g) \leftrightarrow 2 \text{ NO}(g)$$

- a. Nothing happens.
- b. The reaction shifts toward the reactants.
- c. The reaction shifts toward the products.
- 22. At 298 K, Δ G for a given reaction is -25.7 kJ. What is K for this reaction at 298 K?
 - a. 1.01
 - b. 0.990
 - c. 3.20×10^4
 - d. 3.13 x 10⁻⁵
 - e. 22.0

23. At some temperature, $K_w = 5 \times 10^{-14}$. What is the pOH of pure water at this temperature?

- a. 6.00
- b. 6.65
- c. 7.00
- d. 7.35
- e. 8.00
- 24. Which of the following is the most likely temperature at which $K_w = 5 \times 10^{-14}$ as above, given $K_w = 1 \times 10^{-14}$ at room temperature?
 - a. 0 °C
 - b. 12 °C
 - c. 25 °C
 - d. 50 °C

25. 1 mole of HNO₃ is added to 10 L of water. What is the pH of this solution?

- a. 0
- b. 1
- c. 2
- d. 7
- e. 12
- f. 13 g. 14
- 26. The pK_a of hydrofluoric acid (HF) is 3.15. If 132 g of HF is dissolved in 1 L of water, what is the pOH of the resulting solution?
 - a. 13.5
 - b. 12.83
 - c. 14.66
 - d. 1.17
 - e. 14.82
- 27. 1 mole of ethylenediamine is dissolved in 1 L water, and the resulting $[OH^-]$ is 3.16 x 10⁻¹¹ M. What is K_a for ethylenediamine?
 - a. 10^{-22}
 - b. 10⁻⁷
 - c. 5×10^{-6}
 - d. 1.8×10^{-2}
- 28. Which of the following is **not** a strong acid?
 - a. HF
 - b. HCl
 - c. HBr
 - d. HI
 - e. HClO₄
 - f. HClO₃

29. What is the pH of a solution with $[OH^-] = 3.7 \times 10^{-4} M$?

- a. 2.7×10^{-11}
- b. 3.43
- c. 10.57
- d. 11.43
- e. 2.69
- f. 12.54
- 30. Which of the following is the strongest base?
 - a. Ammonia, $K_b = 1.8 \times 10^{-5}$
 - b. Aniline, $K_b = 4.2 \times 10^{-10}$
 - c. Dimethylamine, $K_b = 5.1 \times 10^{-4}$
 - d. Pyridine, $K_b = 1.4 \times 10^{-9}$
 - e. Urea, $K_b = 1.5 \times 10^{-14}$