Spring 2007 CH 302 Worksheet 3

Below are listed various reactions, stresses, and reaction components. Indicate how the amount of the indicated component changes when the stress is applied.

1	Reaction	Stress	Component
	1. $3 H_2(g) + N_2(g) \leftrightarrow 2 NH_3(g)$	Addition of N ₂ gas	H_2
	Answer: The amount of H_2 decreases, because	e the reaction shifts to the	right to
	decrease the amount of N_2 present (adding N_2	decreases Q).	
	2. $CH_3OH(g) + 2O_2(g) \leftrightarrow CO_2(g) + 2H_2O(g)$	Addition of heat	CH ₃ OH
	Answer: The amount of CH ₃ OH <u>increases</u> , be	cause this combustion rea	ction releases
	heat; therefore, it goes in reverse to consume h	neat.	
	3. $CH_3OH(g) + H_2(g) \leftrightarrow CH_4(g) + H_2O(l)$	Addition of pressure	CH ₃ OH
	Answer: The amount of CH ₃ OH <u>decreases</u> , be	ecause the reaction shifts t	to the right to
	decrease the pressure in the system; remember	r that liquids don't contrib	ute to pressure.
4	4. $N_2(g) + O_2(g) \leftrightarrow 2 \operatorname{NO}(g)$	Reduction of pressure	O_2
	Answer: The amount of O_2 does not change,	because the reaction canno	ot shift to
~ .	increase the pressure in the system (there are e	equal amounts of gas on ea	ach side).
Give	the equation for K_c for the equations given in pro-	blems 5-8.	
5	. $2 \operatorname{H}_2(g) + 2 \operatorname{O}_2(g) \leftrightarrow 2 \operatorname{H}_2\operatorname{O}(g)$		
	Answer: $\underline{\mathbf{K}_{c}} = [\underline{\mathbf{H}_{2}}\mathbf{O}]^{2}/[\underline{\mathbf{H}_{2}}]^{2}[\underline{\mathbf{O}_{2}}]^{2}$		
6	. HCl (aq) + H ₂ O (l) \leftrightarrow H ₃ O ⁺ (aq) + Cl ⁻ (aq)		
	Answer: $\underline{\mathbf{K}_{c}} = [\underline{\mathbf{H}_{3}\mathbf{O}^{+}}][\underline{\mathbf{C}}\underline{\mathbf{\Gamma}}]/[\underline{\mathbf{H}}\underline{\mathbf{C}}\underline{\mathbf{I}}]$		
7	. NaCl (s) \leftrightarrow Na ⁺ (aq) + Cl ⁻ (aq)		
	Answer: $\mathbf{K}_{c} = [\mathbf{N}\mathbf{a}^{+}][\mathbf{C}\mathbf{I}^{-}]$ (This is known as	Ksp, the solubility prod	luct for NaCl.)
		17 51	<i>,</i>
8	. $C_8H_{18}(g) + 25/2 O_2(g) \leftrightarrow 8 CO_2(g) + 9 H_2O(g)$	(g)	
-	Answer: $\mathbf{K}_{c} = [\mathbf{CO}_{2}]^{8} [\mathbf{H}_{2}\mathbf{O}]^{9} / [\mathbf{C}_{8}\mathbf{H}_{18}]^{2} [\mathbf{O}_{2}]^{2}$	5/2	
		_	
9	Consider the following reaction at 25°C:		
	На н	$I_2 \leftrightarrow 2$ HI	
	The reaction mixture is initially prepared with ($C_{12} = 0.1$ $C_{12} = 0.1$	
	$C_{\rm res} = 0.5$ What is 0 for this initial reaction mi	$c_{H2} = 0.1, c_{12} = 0.1,$	
	$\Delta n_{\rm SWert} = 0.5$. What is Q for this initial reaction in Answer: $\Omega = C_{\rm W}^2 / C_{\rm W} C_{\rm W} = (0.5)^2 / (0.1)$.	(0,1) - 25	
	Answer: $Q = C_{HI} / C_{H2} C_{I2} = (0.3) / (0.1)$	$(0.1) - \frac{20}{20}$	
1	0 Which direction will the reaction in number 7 s	whift given $V = 60.22$	
1	0. Which direction will the reaction in humber 7 s	$\operatorname{Sinnt}, \operatorname{grven} \mathbf{K}_{c} = 00.2?$	
	Answer: Since $Q < Kc$, the reaction will	I shift to the <u>right</u> .	
1	1. Ean that man at it m		
1	1. For the reaction $N_{1}(x) > 2$		
	$N_2(g) + 3F$	$H_2(g) \leftrightarrow 2 NH_3(g)$	
	the equilibrium constant with respect to concen	itration, $K_c = 3.8$. Calcu	ilate K_p at 298 K, the equilibrium
	constant with respect to pressure in atm. (Note	: This hasn't been cover	red in class yet and won't be on
	Tuesday's quiz.)		
	Answer: $K_p = K_c (RT)^{\Delta n} = 3.8[(0.0821 \text{ I})^{\Delta n}]$	$t_{atm/molK}(298K)]^{2-4} =$: 0.00635
1	2. For the reaction		
	$NH_3(g) + H^{\alpha}$	$Cl(g) \leftrightarrow NH_4Cl(s)$	
	AH = 176 k/mal and $AS = 205 k/mal K$ Wi	hat is V for this reaction	a 200 K2 At 600 K2

 $\Delta H = -176 \text{ kJ/mol}$ and $\Delta S = -305 \text{ J/mol}$ K. What is K for this reaction a 300 K? At 600 K? Answer:

At 300 K: $\Delta G = -176 \text{ kJ/mol} - (300 \text{ K})(-.305 \text{ kJ/mol} \text{ K}) = -84.5 \text{ kJ}$ $K = \exp(-\Delta G/RT) = \exp[-(-84500 \text{ J/mol})/(8.314 \text{ J/mol} \text{ K} \cdot 300 \text{ K})]$

$\frac{\mathbf{K} = 5.17 \cdot 10^{14}}{\text{At 600 K: Similar calculations yield K} = \underline{0.246}$

- 13. Calculate ΔG for the formation of ammonia at 298 K, given K_c = 3.8. Answer: ΔG = -RT ln K = -(8.314 J/mol K)(298 K) ln(3.8) = -3.308 kJ/mol
- 14. Assume that at some temperature, the reaction given below has an equilibrium constant K_p of 7.5. $C_6H_{12}O_6$, O_2 , CO_2 , and H_2O are places in a reaction vessel, each with an initial concentration of 1 atm. What are the equilibrium pressures?

 $C_6H_{12}O_6(g) + 6 O_2(g) \leftrightarrow 6 CO_2(g) + 6 H_2O(g)$

- a. $P_{C6H12O6} = 1.017, P_{O2} = 1.108, P_{CO2} = 0.892, P_{H2O} = 0.891$
- b. $P_{C6H12O6} = 0.898$, $P_{O2} = 0.387$, $P_{CO2} = 1.613$, $P_{H2O} = 1.613$
- c. $P_{C6H12O6} = 0.981$, $P_{O2} = 0.887$, $P_{CO2} = 1.112$, $P_{H2O} = 1.112$
- d. $P_{C6H12O6} = 1.465$, $P_{O2} = 1.465$, $P_{CO2} = 0.535$, $P_{H2O} = 0.535$

Answer: Plug the given values in and check. Because K > 1, answers a and d can be eliminated immediately.

- 15. Write an expression for K_p for the reaction in problem 14 above, in terms of
 - x = the magnitude of the change in pressure of $C_6H_{12}O_6$.

Answer: $Ksp = \frac{(1+6x)^6(1+6x)^6}{(1-x)(1-6x)^6}$

16. Assume that the reaction below has an equilibrium constant of 105 at some temperature. If you start out with 1 M CO₂ and 1 M H₂ in 3 kg of water, what is the equilibrium concentration of CO?

$$CO(aq) + H_2O(l) \leftrightarrow CO_2(aq) + H_2(aq)$$

CO (aq)	$H_2O(l)$	CO_2 (aq)	$H_2(aq)$			
0	XXXXX	1	1			
+x	XXXXX	-X	-X			
Х	XXXXX	1-x	1-x			
K = 105 = (1-x)(1-x)/x						
$105x = x^2 - 2x + 1$						
$x^2 - 107x + 1 = 0$						
By the quadratic formula, $x = 107$ or $x = 0.00935$. If $x = 107$, [CO ₂] and [H ₂] would be						
negative, so $[CO] = x = 0.00935 M$.						

17. For the same reaction as in number 14, imagine you have some mixture of CO, CO₂, and H₂ in water. You know that initially $C_{CO} = 0.0025$ M and $C_{H2} = 0.5$ M. The equilibrium concentration of CO₂ ends up being 0.005. What are the initial and final concentrations of CO₂ in this reaction?

Ans	wer:					
	CO (aq)	H2O (l)	CO2 (aq)	H2 (aq)		
	0.0025	XXXXX	Х	0.5		
	+0.0025	XXXXX	-0.0025	-0.0025		
	0.005	XXXXX	x-0.0025	0.4975		
K = 105 = (x-0.0025)(0.4975)/(0.005)						
0.525 = 0.4975 x - 0.00124375						
x = 1.05778						
So <u>initial C_{CO2} = 1.05778 M, final [CO₂] = 1.05528 M</u>						

18. One mole of acetic acid is dissolved in one liter of water, following the reaction below. K for this process, known as the "acid dissociation constant" for acetic acid, is about 1.8 x 10⁻⁵. Given that the pH of a solution is defined by

```
pH = -\log_{10}([H_3O^+]), what is the pH of this solution at equilibrium?
HC<sub>2</sub>H<sub>3</sub>O<sub>2</sub> (aq) + H<sub>2</sub>O (1) \leftrightarrow C<sub>2</sub>H<sub>3</sub>O<sub>2</sub><sup>-</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq)
```

Ans	wer:						
	$HC_2H_3O_2$	$H_2O(l)$	$C_2H_3O_2^-$	$H_3O^+(aq)$			
	(aq)		(aq)				
	1	XXXXX	0	0			
	-X	XXXXX	+x	+x			
	1-x	XXXXX	Х	Х			
	$K = 1.8 \times 10^{-5} = x^2/(1-x)$						
	(1.8×10^{-5}) - $(1.8 \times 10^{-5})x = x^2$						
$x^{2} + (1.8 \times 10^{-5})x - (1.8 \times 10^{-5}) = 0$							
	x = 0.00423 M						
	$pH = -\log_{10}([H_3O^+]) = -\log_{10}(x) = -\log_{10}(0.00423) = 2.35$						

19. Imagine some reaction A ↔ A*, which converts some species A between two forms. The reaction takes place in solution. If 1 mole of each of A and A* is placed in 1 L of water, and K for the reaction as written is 1.5, what is the equilibrium concentration of A*?

```
Answer:
```

20. Once the reaction in problem 19 has reached equilibrium, 90% of the A* is removed from the mixture, and equilibrium is reestablished. What is the new concentration of A*?

Ans	swer:				
	А	A*			
	0.8	0.12			
	-X	+x			
	0.8-x	0.12+x			
K = 1.5 = (0.12 + x)/(0.8 - x)					
1.2 - 1.5 x = 0.12 + x					
1.08 = 2.5 x					
	x = 0.432				
	$[A^*] = 0.12 + 0.432 = 0.552 M$				