Spring 2006 Laude CH302 Worksheet 3 covering Chapter 8 on Physical Equilibrium

1. Separate these compound into those that are polar (water soluble) and a non-polar (hydrophobic):
NaCl, NaCOOCH ₃ , cooking oil, HCl, CH ₄ , CH ₃ OH, CH ₃ CH ₂ OH, gasoline, N ₂

Water soluble	Non-polar solvent soluble

2. Rank the following substance in increasing order of vapor pressure: NaCl, NH₃ solution, Vinegar (CH₃COOH), cooking oil, HCl, CH₄, He and H₂O.

3. Rank the following solutes in terms of increasing solubility in the solvent:

Solvent	Solutes	Increasing solubility
Water	NaCl, H ₂ S, CH ₄ , NH ₃	
Hexane	NaCOOCH ₃ , cooking oil, CH ₃ OH, N ₂	

- **4.** A liquid is heated at atmospheric pressure. For each of the properties listed, predict whether they would increase or decrease in magnitude..
 - (a) Viscosity b) Density (c) Surface Tension (d) Vapor Pressure (e) Tendency to Evaporate
- **5.** Calculate the amount of heat (J) required converting 180 g of water at 10.0°C to steam at 105.0°C. Use constants found in the lecture notes for this calculation.
- **6.** The molar heat of fusion, ΔH_{fus} , of Na is 2.6 kJ/mol at its melting point, 97.5°C. How much heat must be absorbed by 5.0g of solid Na at 97.5°C to melt it?
- **7.** How much heat would be required to convert 234.3 g of solid benzene, $C_6H_6(s)$, at 5.5 °C into benzene vapor, $C_6H_6(g)$, at 100.0 °C? Benzene has the following molar heat capacities: $C_6H_6(l) = 136 \text{ J/mol}$ °C, and $C_6H_6(g) = 81.6 \text{ J/mol}$ °C. The molar heat of fusion for benzene is 9.92 kJ/mol and the molar heat of vaporization for benzene is 30.8 kJ/mol. The melting point of benzene is 5.5 °C; and the boiling point of benzene is 80.1 °C. Benzene's molecular weight is 78.0 g/mol.

8. Choose the ion in each pair that would be more strongly hydrated in aqueous solution									
and justify your answer (a) Na+ or Rb+		(b) Cl or Br		Fe^{2+}	(d) Na^+ or Mg^{2+}				
9. In Denver, the partial pressure of oxygen is 0.17 atm. What is the molar solubility of oxygen there at 20°C? Henry Law constant for oxygen at 20°C is 0.0013 mol/L atm.									
10. What is the molality of a solution that contains 128 g of CH ₃ OH in 108g of water?									
11. (a) How many grams of H ₂ O must be used to dissolve 50.0 g of sucrose, C ₁₂ H ₂₂ O ₁₁ , to prepare a 1.25 m solution of sucrose?									
(b) Predict the boiling	point of this	solution; Kb for	H ₂ O is 0.512°C/m.						
(c) Calculate the freezing point of this solution; K_f for H ₂ O is 1.86° C/ m .									
(d) What osmotic pressure would this solution exhibit at 25°C? Its density is 1.34g/mL.									
12. What are the mole of CH ₃ OH and 108 g of		CH3OH and H2C	in the solution des	scribed in #	†1? The solution contains 128 g				
	on that contain	ns 1.00 mole of	heptane and 4.00 m	noles of oct	ssure of pure octane is 31.0 tane. Calculate the vapor				
(b) Calculate the mole	fractions of l	neptane and octa	ane in the vapor tha	t is in equi	librium with this solution.				
14. When 15.0g of ethyl alcohol, C ₂ H ₅ OH, is dissolved in 750 grams of formic acid, the freezing point of the solution is 7.20°C. The freezing point of pure formic acid is 8.40°C. Solve for K_f for formic acid.									
Č 1	culate the mo		1	_	g of benzene. The solution point of pure benzene is				
16. 0.500 grams of a so of 8.92 torr at 27.0°C,	-		-	If this solu	ution has an osmotic pressure				
17. Rank the following in terms of increasing boiling point elevation when 0.1 moles of each is placed in 1 liter of water.									
	BsSO ₄	CaCl ₂	CaCl ₂ Urea (a nonionizable, water soluble organic molecule)						

18. Predict the temperature at which water boils if it has a vapor pressure of 355 torr at 80° C. The ΔH°_{vap} of water is 40.7 kJ/mol.