Reaction at 300K, constant P & T	ΔS_{system}	ΔΗ	$\Delta S_{surroungding}$	ΔS_{total}	Is the rxn spontaneous?
	(51.21 J/K +1/2 *	411.15 kJ	-411.15 kJ/300K	-1279.885	No
$NaCl(s) \rightarrow Na(s) + \frac{1}{2} Cl_{2(g)}$	223.07 J/K) - 72.13		= -1370.5 J/K	J/K	
	J/K = 90.615 J/K				
	83.39 J/K – (39.75	-986.09 kJ – (-	65170 J/300K =	190.963	Yes
$CaO(s) + H_2O(l) \rightarrow Ca(OH)_{2 (aq)}$	J/K + 69.91) = -	635.09 -285.83)	217.2333 J/K	J/K	
	26.27 J/K	= -65.17kJ			
	(3* 130.68 + 6*	-82.9kJ	82900J/300K	433.503	Yes
$C_6H_{6(g)} \rightarrow 6C(s) + 3H_{2(g)}$	5.74) – 269.31 =		=276.3333 J/K		
	157.17 J/K				
	2* 42.63 - (93.14 +	2* -157.3-(-	146000 J/300 K =	597.16667	Yes
$Cu_2O(s) + \frac{1}{2}O_{2(g)} \rightarrow 2CuO_{(s)}$	$\frac{1}{2} * 205.14) = -$	168.6) = -146	486.6667 J/K	J/K	
	110.45 J/K	kJ			
	186.26 + 188.83 * 2	(-74.81 + 2*-	164940 J /300 K	277.26	Yes
$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O(g)$	-(213.74 + 4*)	241.82) - (-	= 549.8		
	130.68) =	393.51) = -			
	-172.54 J/K	164.94 kJ			

Part 1. Determining Reaction Spontaneity based on ΔS_{total}

Part 2. Finding an Equilibrium Temperature from ΔS (a	assume that S and H doesn't change much with temperature)
---	---

Reaction/Process	ΔS_{system}	ΔΗ	Temperature which reaction/process is in equilibrium
$CH_3OH_{(l)} \rightarrow CH3OH_{(g)}$	293.81-126.8 = 167.01 J/K	-200.66- (-238.86) = 38.2 kJ	- 38200 J / - 167.01 J/K = 228.72 K
$I_2(g) \rightarrow I_2(s)$	116.14 - 260.69 =- 144.54 J/K	-62.04 kJ	62040 J/ 144.54 J/K = 429.22 K
$N_{2(g)}$ + 3/2 $H_{2(g)}$ → $NH_{3(g)}$	192.45 - (191.61 + 3/2 * 130.68) = -195.18 J/K	-80.29kJ	80 290 J / 195.18 J/K = 411.36 K
$3O_{2(g)} \rightarrow 2O_{3(g)}$	2* 238.93 - 3* 205.14 = -137.56 J	2* 142.7 = 285.4 kJ	- 285400 / - 137.56 = 2074.73 K

Part 3. True or False (if false, explain your answer)

1. The Second Law of Thermodynamics says that the entropy of any system is always increasing **False.** The Second Law states that the entropy of the isolated system (universe) increases for a spontaneous reaction.

2. The universe is an isolated system.

True. Don't confuse the system (which is the reaction) and isolated system (which is usually the universe).

3. A process in which ΔS decreases is not spontaneous

False. If ΔS of the surroundings exceeds ΔS of the system then the reaction is spontaneous. This can occur when a reaction is sufficiently exothermic that the heat liberated in the process sufficiently increases the entropy of the surroundings.

4. ΔS equals to $-\Delta H/T$ when the process happens at constant pressure and temperature. **True.**

Write out and balance the formation reaction at 300K:	ΔΗ	ΔS	Free energy ΔG (using the formula with ΔH and ΔS)	Is the compound stable at room temperature?
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$	-241.82 kJ	$188.83 - (130.68 + \frac{1}{2})$ 205.14) = -44.42 J	-241820 - (-44.42* 300) = -228494 J	Yes
$C + O2 \rightarrow CO_2$	-393.51 kJ	213.74 - (5.740 + 205.14) = 2.86 J/K	-393510 - 2.86*300 = -394368 J	Yes
$H_2 + I_2 \rightarrow 2HI$	26.48 kJ	2*206.59- (116.14+ 130.68) = 166.36 J/K	26480 – 166.36 *300 = -23428 J	Yes
$K(s) \rightarrow K(g)$	89.24 kJ	160.34-64.18 = 96.16 J/K	89240 – 96.16 *300=60392 J	No
$4P \rightarrow P_4$	58.91 kJ	279.93 - 4*41.09 = 109.57 J/K	58910 – 300*109.57 = 26039 J	No

Part 4. Determining Stability	of a Compound from	the Free Energy of Reaction