Spring 2006 CH302: Worksheet 1c More Challenging Thermodynamics Multiple Choice problems

• Hess's Law and combined reaction enthalpies

1. Given that $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)} \Delta H = -296.8 \text{ kJ/mol}$ $S_{(s)} + 3/2 O_{2(g)} \rightarrow SO_{3(g)} \Delta H = -395.6 \text{ kJ/mol}$, determine the enthalpy change for the decomposition reaction $2SO_{3(g)} \rightarrow 2SO_{2(g)} + O_{2(g)}$.

2. Given that

 $\begin{array}{c} 2H_2 + O_2 \rightarrow 2H_2O \ \Delta H = -571.6 \ \text{kJ/mol} \\ C_3H_4 + 4O_2 \rightarrow 3CO_2 + 2H_2O \ \Delta H = -1937 \ \text{kJ/mol} \\ C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O \ \Delta H = -2220 \ \text{kJ/mol}, \\ \text{determine the heat of the reaction for} \\ C_3H_4 + 2H_2 \rightarrow C_3H_8. \end{array}$

• Internal Energy calculations

3. The standard molar heat of freezing for water is -6020 J/mol. Calculate q, w, and ΔE for freezing 1.0 mol of water at 0°C and 1 atm pressure. (Hint: there is no need to use a calculator.)

- 4. For a reaction in which more moles of gas are produced than are consumed (at constant pressure), ΔH is
 - a) Equal to ΔE
 - b) Less than ΔE
 - c) Greater than ΔE

• Statistical thermodynamics: internal energy theory

5. What is the total motional contribution to the molar internal energy of CO_2 ? (Express your answer in amounts of RT.)

6. What is the total motional contribution to the molar internal energy of NH_3 ? (Express your answer in Amounts of RT.)

• Statistical thermodynamics: heat capacity theory

7. When 25g of a metal at 90 $^{\circ}$ C is added to 50 g of water at 25 $^{\circ}$ C, the temperature of the water rises to 29.8 $^{\circ}$ C. What is the specific heat capacity of the metal?

• Calculation of the entropy change at a phase transition

8. What is the entropy change for the freezing of 3.33 grams of an alcohol, C₂H₃OH, at 373.2K given that $\Delta H = -40,700 \text{ J/mol}$?

• Statistical thermodynamics: Boltzmann formula

- 9. Use the Boltzmann formula to calculate the entropy at T = 0 for
 - a) a mole of NCl₃ that can be oriented one way
 - b) a mole of NCl₂Br that can be oriented three ways

• Statistical thermodynamics: Third Law

10. Based on the structures of each of the following molecules, which are most likely to have a residual energy in their crystal forms at T = 0?

a) CO_2 b) O_3 c) HCl d) Cl_2

• Entropy Change and the surrounding

11. When a sugar cube dissolves in a cup of coffee (an endothermic process), what the the signs of the entropy change for the system, surroundings and universe, respectively.

a) -,-,b) -,+,+ c) +,-,+ d) +,+,+ e) none are correct

• Calculating the change in free energy

12. Calculate ΔG° for the reaction $2N_2(g) + 3O_3(g) \rightarrow 2 N_2O_3(g)$ at $25^{\circ}C$

	ΔH_{f}^{o}	S ^o
N_2	0	191.5
O ₃	0	205
N_2O_3	83.72	312.2

- a) 540 kJ/mol rxn
- b) 278.7 kJ/mol rxn
- c) -561 kJ/mol rxn
- d) -540 kJ/mol rxn
- e) +56 kJ/mol rxn