CH 302 Spring 2007 Worksheet 15 Practice Exam 3

Constants:

F = 96,485.3383 C mol⁻¹R = 8.314472 J mol⁻¹K¹

 Based on the half-cell potentials given below, what is K for the following reaction at 298 K? (For this reaction, n = 6) 3Ni²⁺(aq) + 2Fe(s) ↔ 3Ni(s) + 2Fe³⁺(aq)

	$3N1^{-}$ (aq) + 2Fe(s) $\leftrightarrow 3N1(s) + 2Fe^{-}$ (a			
	Reaction	$\Delta E_{r}^{0}(V)$		
	$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.25		
	$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77		
10 ¹⁰³				

- a. 3.17×10^{103}
- b. 3.15×10^{-104}
- c. 5.90×10^5
- d. 49.1
- 2. A battery made using the following reaction maintains a current of 0.73 amps (1 amp = 1 C/s) for 30 seconds. What is the change in the amount of lithium (solid) present in this amount of time? $Cu^{2+}(ag) + 2Li(g) \rightarrow Cu(g) + 2Li^{+}$

$$Cu^{2+}(aq) + 2Li(s) \rightarrow Cu(s) + 2Li$$

- a. $+2.27 \times 10^{-4}$ mol
- b. -2.27 x 10⁻⁴ mol
- c. $+4.54 \times 10^{-4}$ mol
- d. -4.54 x 10⁻⁴ mol
- 3. Calculate the potential *E* for the following cell.

The balanced reaction is:

$$3\mathrm{Cu} + 2\mathrm{Au}^{3+} \rightarrow 3\mathrm{Cu}^{2+} + 2\mathrm{Au} \ (\mathrm{n} = 6)$$

The half-cell potentials are:

	Reaction	$\Delta E_{r}^{0}(V)$
	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
	$Au^{3+}(aq) + 3e^- \rightarrow Au(s)$	+1.52
a. 1.18 '	V	
b. 0.855	5 V	
c. 1.13	V	
d. 1.04 V	V	
		0 1 1

- 4. Which type of battery uses the chemical manufactured in greatest quantity in the United States:
 - a. metal hydride
 - b. lead acid
 - c. lithium ion
 - d. alkaline

5. For the reaction

$$2NO + O_2 \rightarrow 2NO_2$$

Which of the following is equal to d[O₂]/dt?

- a. -d[NO]/2dt
- b. $d[NO_2]/2dt$
- c. $-d[NO_2]/dt$
- d. $-d[NO_2]/2dt$
- 6. A certain reaction is 2^{nd} order in A, 0^{th} order in B, and -3^{rd} order in C. You have concentrations of [A] = 0.50 M, [B] = 3.2 M, and [C] = 0.95 M. The rate constant is k = 4.7 x 10^{-3} M² S⁻¹. What is the rate of the reaction?
 - a. $7.14 \times 10^{-3} \text{ M s}^{-1}$
 - b. $1.37 \times 10^{-3} \text{ M s}^{-1}$
 - c. $7.92 \times 10^{-3} \text{ M s}^{-1}$
 - d. $2.47 \times 10^{-3} \text{ M s}^{-1}$
 - e. $4.39 \times 10^{-3} \text{ M s}^{-1}$
- 7. A reaction has a rate constant of 2.7 x 10^{-4} M² s⁻¹. The order of the reaction is
 - a. 0 b. 2 c. 3 d. -2 e. -1
- 8. The table below was constructed by using three different combinations of starting concentration and measuring the initial rate.

[A] ₀ (M)	$[\mathbf{B}]_0(\mathbf{M})$	Initial rate (M/s)
0.3	0.3	2.70 x 10 ⁻⁵
0.45	0.3	6.08 x 10 ⁻⁵
0.45	0.6	1.22×10^{-4}

Find k for this reaction.

- a. $3.00 \times 10^{-4} \text{ M}^{-2} \text{ s}^{-1}$
- b. $1.00 \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$
- c. $3.33 \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$
- d. $1.11 \times 10^{-2} \text{ M}^{-2} \text{ s}^{-1}$
- 9. For the reaction

 $A \rightarrow B$

 $k = 2.43 \times 10^{-4} \text{ s}^{-1}$. Assume the rate does not depend on any species besides A. If you begin with 0.750 M A, how much remains after 30 minutes?

- a. 0.310 M
- b. 0.484 M
- c. 0.565 M
- d. 0.725 M

10. For the reaction

$C \rightarrow D$

 $k = 6.25 \times 10^{-5} M^{-1} s^{-1}$. Assume the rate does not depend on any species besides C. If you begin with 1.33 M C, how much remains after 2 hours?

- a. 0.880 M
- b. 0.848 M
- c. 0.832 M
- d. 0.302 M
- 11. The following three plots relate the concentration of a species A and time in the reaction $A \rightarrow B$. Based on these plots, the reaction is _____ order in A.

- a. Zeroth
- b. First
- c. Second
- d. Third
- e. More information is needed.
- 12. Collision theory states that one of the major barrier to a reaction proceeding is:
 - a. There isn't enough energy to create the unfavorable transition complex.
 - b. The molecules are far apart and have to get close enough to collide and react.
 - c. The molecules must be in the proper orientation for a reaction to occur.
 - d. If molecules have too much energy, they will collide and "bounce off" of each other rather than reacting.
- 13. The activation energy E_a is the energy different between the _____ and the
 - a. products; reactants
 - b. transition state; reactants
 - c. products; transition state
- 14. The reaction $2A + 3B \rightarrow 5C$ has a rate constant k of 4.50 x 10^{-4} M s⁻¹ at 298 K and 2.50 x 10^{-2} at 373 K. What is the activation energy, E_a, for this reaction?
 - a. 49.5 kJ/mol
 - b. 595 kJ/mol
 - c. 21.1 kJ/mol
 - d. -49.5 kJ/mol
 - e. -595 kJ/mol

- 15. Given the reaction mechanism below, what is the rate expression for the reaction $NO_2 + CO \rightarrow NO + CO_2$?
 - $NO_2 + NO_2 \rightarrow NO_3 + NO \qquad \text{slow}$ $NO_3 + CO \rightarrow NO_2 + CO_2 \qquad \text{fast}$ a. rate = k[NO_2][CO]/[NO][CO_2] b. rate = k[NO_2]^2[CO]/[NO] c. rate = [NO_2]^2 d. rate = [NO_2]^2/[NO_3][NO]
- 16. What is E_a for the exothermic reaction represented by the plot below?

- a. 150 kJ/mol
- b. 200 kJ/mol
- c. -200 kJ/mol
- d. 50 kJ/mol
- e. -50 kJ/mol
- 17. Which of the following is NOT accomplished with an automobile's catalytic converters:
 - a. Oxidation of toxic CO to the greenhouse gas CO₂
 - b. Reduction of nitrogen oxides to $N_2 \mbox{ and } O_2$
 - c. Increased engine performance
 - d. Oxidation of unburnt hydrocarbons
- 18. Which of these species is the most reactive with water?
 - a. HCl(g)
 - b. NaOH(s)
 - c. Ca(s)
 - d. H₂(g)
 - e. Li(s)
- 19. Why is calcium so prevalent in structural materials such as concrete and tooth enamel?
 - a. It's highly abundant in nature, so it's readily available for use in common materials.
 - b. It forms strong covalent bonds, and because it has two electrons it can form strong double bonds.

- c. Its cation has a small ionic radius and a double positive charge, so it has a high charge density and can form strong combinations with polyanions.
- d. Its cation has a large ionic radius so it fills a lot of space in an ionic lattice.
- 20. Ruby, sapphire, and topaz are all gems made of _____ combined with trace metals.
 - a. H₂O
 - b. SiO_2
 - c. Al_2O_3
 - $d. \ \ Na_{2}B_{4}O_{7}\left(Borax\right)$
- 21. Why is molecular nitrogen so very stable while molecular phosphorous is highly reactive with air?
 - a. Nitrogen is more electronegative than phosphorous, so its bonds are stronger.
 - b. Nitrogen forms triple bonds. Phosphorous is too large to form π bonds, so it must make a highly-strained P₄ structures.
 - c. Phosphorous has empty d-orbitals, which make it much more reactive than nitrogen, which does not.
- 22. "_____ is everywhere because sand and rocks are everywhere."
 - a. Carbon
 - b. Aluminum
 - c. Iron
 - d. Silicon
 - e. Nitrogen
 - f. Boron
- 23. Which of the following has uses such as removing metals from the earth and making useful phosphates?
 - a. Sulfuric acid
 - b. Phosphoric acid
 - c. Ammonia
 - d. Chlorine
- 24. Why is Cl⁻ highly abundant in ocean water while F⁻ is almost completely absent?
 - a. F^{-} ions in water rapidly undergo redox reactions to form F_{2} gas, which is released into the atmosphere.
 - b. HCl is a strong acid, so it dissolves completely, but HF isn't, so it sticks together in solution.
 - c. Chlorine is more abundant in nature than fluorine is.
 - d. F⁻ has a higher charge density, so it is less soluble in water and tends to stay in solid rocks and minerals.
- 25. Nylon is an example of a(n) _____.
 - a. Block copolymer

- b. Protein
- c. Polynucleotide
- d. Alternating copolymer
- e. Polysaccharide

27. The *parent* in the name of the following molecule is _____.

- a. -prop-
- b. –but-
- c. -pent-
- d. -hex-
- e. -hept-
- f. –oct-

28. Which of the following is an example of an elimination reaction?

- a. $CH_3OH + 3/2O_2 \rightarrow CO_2 + 2H_2O$
- b. $CH_2=CH_2 + HBr \rightarrow CH_3-CH_2Br$
- c. CH_3 - $CH_2OH \rightarrow CH_2=CH_2 + H_2O$
- d. CH_3 - $CH_2OH + HBr \rightarrow CH_3$ - CH_2Br
- 29. What is the name of the molecule below?

- a. Propanol
- b. Propanal
- c. Propanone
- d. Propanoic acid
- 30. The organic molecule 3-methylbut-2-amine has which of the following structures?

