Kinetics work sheet Kinetics Worksheet

Although kinetics problems may seem complicated, all of the information to solve them comes from concentration-time plots: start a reaction, start the stopwatch, and then monitor how the products and reactant concentrations (molarity) change over time. You collect a set of x-y data pairs at increasing time.

Listed below are three sets of concentration-time data collected at two different temperatures for each reaction

 $C \rightarrow D$

Note here that the coefficient for C is 1 in all calculations. (In cC, the c=1).

This is all the kinetic data you need to be able to calculate:

The instantaneous rate at any time: $\Delta C/\Delta t$ The reaction order (use both method of initial rates and curve fitting): x rate constant at each temperature: k_1, k_2 half life at each temperature: $t_{1/2}$ initial concentration at each temperature: $[C_0]$ activation energy: E_a pre-exponential factor: A

On other words, you can assign all the bolded constants to the following rate law:

 $-\Delta C/\Delta t = rate = \mathbf{k}[C]^{x} = \mathbf{A} \exp(-\mathbf{E}_{a}/RT) [C]^{x}$

To give you plenty of practice, the data have been obtained for three reactions each of which has a different order. The concentration-time data for each set of reactions is shown below:

Find rates, C_0 , k, $t_{1/2}$, A, E_a and reaction order at each temperature.				
Data at 300K		Data at 3	310K	
time (s)	[C]	time (s)	[C]	
0	Unknown C ₀	0	Unknown C ₀	
1	.12	1	.074	
2	.074	2	.027	
3	.044	3	.009	
4	.027	4	.0036	
5	.016	5	.0013	
6	.009	6	5.0×10^{-4}	
8	.0036	8	6.7×10^{-5}	
10	.0013	10	9.1x10 ⁻⁶	

Problem set 1.	
Find rates, C_0 , k, $t_{1/2}$, A, E_a and	reaction order at each temperature.

Problem set 2. Find rates, C_0 , k, $t_{1/2}$, A, E_a and reaction order at each temperature.

Data at 300K		Data at	313K
time (s)	[C]	time (s)	[C]
0	Unknown C ₀	0	Unknown C ₀
1	.182	1	.166
2	.166	2	.142
3	.153	3	.125
4	.142	4	.111
5	.133	5	.1
6	.125	6	.09
8	.111	8	.076
10	.1	10	.066

Problem set 3.

Find rates, C_0 , k, $t_{1/2}$, A, E_a and reaction order at each temperature.

Data at 300K		Data at 305K			
time (s)	[C]	time (s)	[C]		
0	Unknown C ₀	0	Unknown C ₀		
.05	.1875	.05	.175		
.1	.175	.1	.15		
.15	.1625	.15	.125		
.2	.15	.2	.1		
.25	.1375	.25	.075		
.3	.125	.3	.05		
.35	.1125	.35	.025		
.4	1	.4	0		

Problem set 2 solutions. Find rates, C_0 , k, $t_{1/2}$, A, E_a and reaction order at each temperature.

Data at 300K			Data at 313K		
time (s)	[C]	1/[C]	time (s)	[C]	1/[C]
0	Unknown C ₀		0	Unknown C ₀	
1	.182	5.5	1	.166	6
2	.166	6	2	.142	7
3	.153	6.5	3	.125	8
4	.142	7	4	.111	9
5	.133	7.5	5	.1	10
6	.125	8	6	.09	11
8	.111	9	8	.076	13
10	.1	10	10	.066	15

Calculate **order** from method of initial rates (see handout on order of reaction) or from functional relationships of integrated rate law. Notice in this case that the 1/[C] result in the data table above is a straight line, indicating that this reaction is order x = 2 in [C]. So rate = $k [C]^2$.

Solve for rate constant, **k**, and initial concentration, C_0 , directly knowing the order, using integrated rate law: 1/[C] = kt + 1/[C₀] so slope = k and y intercept = 1/[C₀]

At **300K** curve fit yields y = 0.5 x + 5 At **313 K** curve fit yields y = 1.0 x + 5

 $k = 0.5 \text{ M}^{-1} \text{sec}^{-1}$ and $1/[C_0] = 5$, $[C_0] = 0.2 \text{ M}$ $k = 1.0 \text{ M}^{-1} \text{sec}^{-1}$ and $1/[C_0] = 5$, $[C_0] = 0.2 \text{ M}$

Solve for half life, $t_{1/2}$, for second order reaction: $t_{1/2} = 1/k[A_0]$ and for 0.2 M

At **300 K**, $\mathbf{t}_{1/2} = 1/((.2)(.5)) = 10$ sec at **313K**, $\mathbf{t}_{1/2} = 1/((.2)(1) = 5$ sec

Solve for activation energy, **Ea** using the combined Arrhenius equation :

 $\ln (k_2/k_1) = (\mathbf{E}\mathbf{a}/R)(1/T_1 - 1/T_2) \quad \text{so} \quad \ln(1.0/0.5) = (\mathbf{E}\mathbf{a}/8.3)(1/300 - 1/313)$ and substituting, $\mathbf{E}\mathbf{a} = 41,600$ J or 41.6 kJ

Solve for pre-exponential term, A: k = Aexp(-Ea/RT) so Rearrange and solve for $A = 8.7 \times 10^6$ 0.5 = Aexp(-41,600/8.3*300)

Problem set 3 solutions. Find rates, C_0 , k, $t_{1/2}$, A, E_a and reaction order at each temperature.

Data at 300KData at 305K		at 305K		
time (s)	[C]	time (s)	[C]	
0	Unknown C ₀	0	Unknown C ₀	
.05	.1875	.05	.175	
.1	.175	.1	.15	
.15	.1625	.15	.125	
.2	.15	.2	.1	
.25	.1375	.25	.075	
.3	.125	.3	.05	
.35	.1125	.35	.025	
4	1	4	0	

Calculate **order** from method of initial rates (see handout on order of reaction) or from functional relationships of integrated rate law. Notice in this case that the [C] result in the data table above is already a straight line, indicating that this reaction is order x = 0 in [C]. So rate = k.

Solve for rate constant, **k**, and initial concentration, C_0 , directly knowing the order, using integrated rate law: $C = -kt + C_0$ so slope = -k and y intercept = C_0

At 300K curve fit yields y = -0.25 x - .2 $k = 0.25 \text{ Msec}^{-1}$ and $[C_0] = 0.2 \text{ M}$ $k = 0.5 \text{ Msec}^{-1}$ and $[C_0] = 0.2 \text{ M}$ At 305 K curve fit yields y = -.5 x - .2 $k = 0.5 \text{ Msec}^{-1}$ and $[C_0] = 0.2 \text{ M}$

Solve for half life, $t_{1/2}$, for first order reaction: $t_{1/2} = C_0/2k$ At **300 K**, $t_{1/2} = 0.2/((2)(0.25)) = 0.4$ sec at **310K**, $t_{1/2} = 0.2/((2)(.5)) = 0.2$ sec

Solve for activation energy, **Ea** using the combined Arrhenius equation : $\ln (k_2/k_1) = (\mathbf{Ea}/R)(1/T_1 - 1/T_2)$ so $\ln (.5/.25) = (\mathbf{Ea}/8.3)(1/300 - 1/305)$

and substituting, Ea = 105,400 J or 105.4 kJ

Solve for pre-exponential term, A: k = Aexp(-Ea/RT) so 0.5 = Aexp(-105,400/8.3*300)Rearrange and solve for A = 1.1 x 108⁹