PROBLEM SOLVING: RANKING MOLECULAR PROPERTIES BASED UPON INTERMOLECULAR FORCES

Names and	London forces	Permanent dipoles	Hydrogen	Ionic bonds	Covalent	
synonyms	(instantaneous	Dipole-dipole	bonding		bonds	
	dipole)		_			
Energy	<1 kJ/mole	5kJ/mole	20 kJ/mole	200 kJ/mole	400 kJ/mole	
Bond or attraction	intermolecular	intermolecular	cular intermolecular inter-an intramo		intramolecular	
Something	Non-polar	Polar molecules	Strongest of	Donate and accept	Share electrons	
interesting	molecules have	have a net dipole	intermolecular	electrons	in a molecular	
about the	no net dipole	_	forces		bond	
force	_					
Rules for	EN=0	EN 0	1. EN atom	EN 2 to 3 ions	EN 0 to 1.5	
identification	or		(EN > 3)	from opposite		
	dipole=0		2. H attached to	ends of periodic		
	(symmetry)		EN atom	table		
Examples	Ar, N ₂ , CH ₄ ,	NO, CH ₃ Cl,	$H_2O, CH_3OH,$	NaCl, CaO, Al ₂ O ₃	С-С, С-Н,	
-	CH ₃ , OCH ₃	acetone	NH ₃ , HCl		C-O, N-N	
Physical	• Low BP		 High BP 	High melting		
properties	 Low viscosity 		High viscosity	point solids		
	• High	>	• Low	-		
	evaporation		evaporation			
	• Low surface		 High surface 			
	tension		tension			

HOW TO ASSIGN FORCES IN FOUR EASY STEPS: The problem is to assign a molecule's intermolecular forces to one of the categories above. Follow the four-step procedure below as applied to assign forces to the following molecules:

N₂, CH₄, CH₃Cl, H₂O, and NaCl.

1. Draw Lewis dot structures.

2. Assign EN to each atom. To do this remember the following three rules for all atoms:

- the second row ranges from 1 to 4 increasing by 0.5
- H is out of place. It is EN=2.1
- all the others elements are a few tenths smaller than the element above:

Li	Be	B	С	Ν	0	F	
1.0	1.5	2.0	2.5	3.0	3.5	4.0	

3. Draw a vector representing the dipole moment between each bond reflecting the direction and magnitude of the electron density: i.e. EN = 0 has no dipole, EN = 0.5 had a small dipole, EN = 2 had a large dipole.

4. Sum the vectors, EN. Look for symmetry in the molecule that cancels out vectors.

Now rank properties based upon net dipole. Let's try some examples.

APPLYING FOUR STEPS TO FIVE SAMPLE MOLECULES TO RANK **ON BASIS OF INTERMOLECULAR INTERACTIONS**

Example 1. In London forces, if SDEN is zero or there is no net dipole, then the molecule is non-polar and has the weakest intermolecular forces.

 N_2 $\Delta EN = 0?$ **CH**₄ Δ EN=0?

These compounds have low boiling points, low viscosity, high evaporation rate.

Example 2. In a **permanent dipole**, if $\Delta EN = 0$, then compounds are polar and have intermediate intermolecular forces.

CH₃Cl

ΔEN=0?

Properties: These compounds have intermediate boiling points, intermediate ΔH_{vap} , etc.

Example 3. In hydrogen bonding if: 1) there is an electronegative atom (EN >3 (N, O, F, Cl) and 2) a hydrogen atom is attached to an electronegative atom, then there are strong intermolecular forces.

 H_2O Atom with large EN? _____ H adjacent to EN atom? _____

Properties: Water has a high boiling point, high ΔH_{vap} , high viscosity, low evaporation.

4. In **ion-ion interactions** if $\Delta EN = 2$ to 3 for cation from column Ia, IIa, IIIa combined with anion of an element in columns VIa and VIIa.

NaCl Column Ia, IIa, IIIa? _____ Column VIa and VIIa? _____ $\Delta EN=$ large? _____

Properties: These solids have very high melting points. Since these compounds are rarely in liquid form, we don't usually consider properties associated with liquids, like evaporation. But can you imagine how long someone would have to wait around to watch salt evaporate.