Lecture 9: The Strong Acid/Strong Base Equilibrium Calculation

After an entire lecture on water with nothing added, you must be pumped to know that in this lecture something will actually be added to water-a strong acid or a strong base. By the end of lecture you will be able to calculate the pH of such a solution.

But first, some review and overview and a few time outs for background:

- We were able to use the RICE expression to determine the pH for the autodissociation of water

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \quad \text { with }\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}}^{0.5} \quad \text { that yields a } \mathrm{pH} \text { at room temperature of about } 7
$$

- We are about to learn that a couple of equally simple equations will provide estimates of pH or pOH for two categories of compounds-and derivations for these equations will follow easily from the RICE equation as will be shown

$$
\begin{array}{ll}
\text { Strong acids or bases in water: } & {\left[\mathrm{H}^{+}\right]=\mathrm{C}_{\mathrm{a}} \text { for strong acids and }\left[\mathrm{OH}^{-}\right]=\mathrm{C}_{\mathrm{b}} \text { for strong bases }} \\
\text { Weak acids or bases in water: } & {\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}\right)^{0.5} \text { for weak acids and }\left[\mathrm{OH}^{-}\right]=\mathrm{C}_{\mathrm{b}} \text { for strong bases }}
\end{array}
$$

Time out 1. Memorizing the strong acids and bases.
Like it or not, sometimes it is just easier to commit really important stuff to memory. Like the seven strong acids and the strong bases. Knowing these makes so many things better, like being able to know what stuff is a strong or weak acid or base, or being able to identify spectator ions. So like or not, learn the following at once or prepare to fail the course:

1. Strong acids : $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}, \mathrm{HClO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3} all dissociate completely
2. Strong bases : OH^{-}of alkali and earth metals $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{CsOH}, \mathrm{KOH}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{Ca}(\mathrm{OH})_{2}$ all dissociate completely

Timeout 2. Electrolytes in solution
Notice that we paid a great deal of attention to the concentration of two charged ions, H^{+}and OH^{-}, when looking at water. In fact, we will be looking almost exclusively at charged ions in water during this section. Charged ions typically come from salts:

- Salt into water \rightarrow cation (positively charged species) and anion (negatively charged species) with the most common examples coming from inorganic materials like NaCl or $\mathrm{Ca}_{3}(\mathrm{PO} 4)_{2}$
- But acids and bases, which form protons and hydroxides, also produce electrolytes with common examples being $\mathrm{HCl}, \mathrm{NaOH}, \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

One of the easiest ways to classify electrolytes is by the extent to which they dissociate in water to make ions. There are three general categories
"strong" electrolytes dissociate completely
"weak" electrolytes dissociate a little
"non" electrolytes don't dissociate at all

By the way, I love to make simple pictures to show off the important chemicial features of a system. Prepare yourself to see how I show these different categories of electrolytes generally.

Examples of Strong

Strong acids: HCl
Strong bases: NaOH
Soluble salts: NaCl

We look at these today

Weak

Weak acids: acetic
Weak bases: ammonium
Sparingly soluble salts

We look at these next time

Non

insoluble salts like sulfides molecules like CO_{2} or alcohols or sugars

We never look at these

Timeout 2: spectator ions.

The material for the next month or so is almost exclusively concerned with compounds that impact the proton or hydroxide concentration. Obviously $\mathrm{H}+$ and $\mathrm{OH}-$ impact the amount of $\mathrm{H}+$ or $\mathrm{OH}-$. And we will learn about various kinds of compounds that produce amounts of $\mathrm{H}+$ and OH - by ways not immediately obvious (like $\mathrm{Fe}+++$ or NH 3 .) But there are also compounds that when thrown into water, have little or no impact on the pH . These compounds are referred to as spectator ions. And as a general rule, among ions, spectators include:

The alkali metals and earth cations like Na^{+}or Ca^{++}or Rb^{+}or Mg^{++}
The anions of strong acids: $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{SO}_{4}{ }^{=}, \mathrm{ClO}_{3}{ }^{-}$and ClO_{4}^{-}(see memorizing strong acids is already paying off.)
Here is the rule for spectators: if you see one, toss it. It as no effect on $\mathbf{p H}$.

Enough time outs. On to the main point of the lecture.

How to calculate the pH of a strong acid or base.

Consider the acid/base nature of strong electrolytes. By definition strong electrolytes "dissociate completely" which means that in setting up the RICE expression, there is a very simple general result that every bit of the initial concentration of electrolyte turns into ions at equilibrium:

$$
\begin{aligned}
K & =\frac{[A+][B-]}{[A B]} \\
& =\frac{(100)(100)}{0}=\infty
\end{aligned}
$$

That is why we approximate that strong electrolytes have a $\mathrm{K} \approx \infty$ and don't need to provide a K value when solving problems.

Examples:

But what does this mean for acid base equilibria? Look at each example and find the protons or hydroxides:

- In each case, 100% ionization

But what is present that matters for acid/base? Toss the spectators!!

$\mathrm{Na}+\mathrm{Cl}-$
are spectators

Cl - is spectator only $5 \mathrm{H}+$ matters

$\mathrm{Na}+$ is spectator only 5 OH - matters

Do you see the result? The H^{+}or OH^{-}for a strong acid or base is just the amount of acid or base added initially.

So strong acid / strong base calculations are easy. It is just the analytical amount you started with
And the equations for strong acids and bases we talked about at the beginning of the lecture are derived:

Strong acids or bases in water:
 $$
\left[\mathrm{H}^{+}\right]=\mathrm{C}_{\mathrm{a}} \text { for strong acids }
$$
 and

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{C}_{\mathrm{b}} \text { for strong bases }
$$

Example:

What is pH of 0.1 M HCl ?

and $\mathrm{pH}=-\log [0.1]=1$
or don't go through all the hassle. Since $\mathrm{C}_{\mathrm{a}}=0.1 \mathrm{M}, \mathrm{H}^{+}=0.1$ and $\mathrm{pH}=1$

Example:
What is the pOH of 0.01 M LiOH ?
Remove spectator ion, Li^{+}, and all we have left is $0.01 \mathrm{M} \mathrm{OH}^{-}$
So $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log [.01]=2$
note: I did this problem without setting up equilibria

A final, HUGELY IMPORTANT Timeout: Getting back and forth between pH and pOH .

You may have felt unfulfilled when I asked you for the pOH of LiOH (and the answer was 2.) You probably thought, what the heck is a pOH ? I want to know the pH .

And the answer is, you already do know it.
Remember that:
Then take -log of the entire equation:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=[\mathrm{H}+][\mathrm{OH}-]=1 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
& \mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14 \text { at at } 25^{\circ} \mathrm{C}
\end{aligned}
$$

So to get back and forth between pH and pOH , just note that the two numbers have to equal 14.

- So if the pH of 0.1 M HCl is 1 , then the $\mathrm{pOH}=14-1=13$
- and if the pOH of $0.01 \mathrm{M} \mathrm{LiOH}=2$ then the $\mathrm{pH}=14-2=12$.

And this last result makes sense-it says that a strong base like LiOH has a high pH .

