There are only six equations needed to solve acid base problems. There are only five possible variables to put into these equations: $\quad \mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}},\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{C}_{\text {acid }}, \mathrm{C}_{\text {base }}$

Strong acid	$[\mathrm{H}+]=\mathrm{Ca}$
Strong base	$[\mathrm{OH}-]=\mathrm{Cb}$
Weak acid	$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}\right)^{1 / 2}$
Weak base	$\left[\mathrm{OH}^{+}\right]=\left(\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}$
Acid buffer	$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{b}}$
Basic buffer	$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} / \mathrm{C}_{\mathrm{a}}$

So there isn't a lot of complexity at the bottom of this. The hard part is figuring out which equation to use and what each of the variables is. To accomplish this task, we use the following procedure: 1) strip away all the extraneous information (spectator ions), 2) identify strong acids and bases, 3) identify weak acids and bases, 4) determine if you should neutralize, 5) perform neutralization calculation, 6) decide whether to work the problem as an acid or a base. Once these steps are done, the problem is greatly simplified to the point that you can use the table above to work a calculation. The back of this page shows every possible type of starting conditions and how they reduce to one of the problems above.

1) Getting rid of spectator ions. Always eliminate the ions that do nothing: all alkali metals and alkali earths ($\mathrm{Na}^{+}, \mathrm{K}^{+}$, Ca^{++}) and all conjugate bases of strong acids $\left(\mathrm{Cl}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}\right)$. Thus
$\mathrm{NH}_{4} \mathrm{Cl}$ is $\mathrm{NH}_{4}^{+} \mathrm{NaOH}$ is just $\mathrm{OH}^{-} \quad \mathrm{KCOOH}$ is just COOH^{-}
2) Identify strong acids and bases. Strong acids are $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}, \mathrm{HBr}, \mathrm{Hl}$. Strong bases are NaOH , $\mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$ and other alkali metal or earth hydroxides. Notice what happens when you get rid of spectator ions for strong acids and bases.

HCl become $\mathbf{H}^{+} \mathrm{HNO}_{3}$ becomes $\mathbf{H}^{+} \mathrm{NaOH}$ becomes $\mathbf{O H}^{-} \mathrm{Mg}(\mathrm{OH})_{2}$ becomes $\mathbf{2 O H}^{-}$
In other words, all strong acids are \mathbf{H}^{+}. All strong bases are $\mathbf{O H}^{-}$.
3) Identify weak acids and weak bases. Hint: this done by looking for the words: weak acid or weak base; it is also done by looking for a small K_{a} or small K_{b} values, (numbers like 1.4×10^{-5} or 6.3×10^{-9}, it is also done by looking for the word acid in a compound that is not strong acid; it is also done by looking for the suffix ate.
Thus formic acid is a weak acid and sodium malonate is a weak base.
And how do you represent a weak acid? $\mathbf{H A}$ (instead of $\mathbf{H C H}_{3} \mathbf{C H}_{\mathbf{2}} \mathbf{C O O}$ which only serves to confuse you).
And how do you represent a weak base: \mathbf{A}^{-}(instead of $\mathbf{N a C H}_{3} \mathbf{C H}_{\mathbf{2}} \mathbf{C O O}$ which only serves to confuse you).
By the time you are through with step 3, you will have identified the presence of all acids and bases. You should have only six possible symbols representing them:
\mathbf{H}^{+}or $\mathbf{O H}^{-}$for strong acids and bases
$\mathbf{H A}$ or $\mathbf{B H}^{+}$for weak acids
\mathbf{B} or \mathbf{A}^{-}for weak bases
Any other terminology is a waste of time on a test without much time.
4) If possible, NEUTRALIZE. You neutralize if:

- you have both an acid and a base present
- one or both of the acid or base are strong
for example:
- HCl and Sodium Acetate
- Acetic acid and NaOH
- HCl and NaOH
- Acetic acid and sodium acetate

are	H^{+}and A^{-}	so	neutralize
are	HA and OH^{-}	so	neutralize
are	H^{+}and OH^{-}	so	neutralize
are	HA and A^{-}	so	do not neutralize

5) To neutralize, you convert both acid and base into moles. Then create a neutralization reaction into which you place the initial mole amounts. Identify the limiting reagent and then calculate the final mole amounts. Convert back to molarity by dividing by total volume if necessary. Examples:

- 5 moles H^{+}and 5 moles $\mathrm{A}^{-} \rightarrow 5$ moles of HA plus 0 moles of H^{+}and A^{-}
- 1 moles of H^{+}and 2 mole of $\mathrm{A}^{-} \rightarrow 1$ mole of HA with one mole of A^{-}left over.
- 0.03 moles of OH^{-}and 0.01 moles of $\mathrm{HA} \rightarrow 0.01$ moles A^{-}with 0.02 moles OH^{-}left over

Note that after neutralization, you can still have a weak base problem, a weak acid problem, a buffer, a strong acid problem or a strong base problem. In other words, you have to do a neutralization to find out what kind of problem you have.
6) Decide on your calculation terrain. Do you work with acids: calculate with $\mathrm{pH}, \mathrm{H}^{+}$and K_{a}. Want to work with bases? Calculate with $\mathrm{pOH}, \mathrm{OH}^{-}$and K_{b}. It doesn't matter what you choose but remember to give the answer they ask for $\left(\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{pH}\right.$ or pOH$)$. How do you move between acid and base terrain? Use:

- to move from a K_{a} to a K_{b} : $\quad \mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=10^{-14}$ or $\mathrm{pK}_{\mathrm{w}}=\mathrm{pK}_{\mathrm{a}}+\mathrm{p} \mathrm{K}_{\mathrm{b}}=14$
- to move from a pH to a $\mathrm{pOH}: \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ or $\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14$

Examples of Acid/Base Problems Using Different Starting Materials

in calculations use K_{a} for acetic acid $=1.8 \times 10^{-5}$ and K_{b} for ammonia $=1.8 \times 10^{-5}$

Starting Materials	Materials after neutralization	Equation to use	Sample problem	Calculate pH
Examples that use the strong acid equation				
Strong acid alone	\mathbf{H}^{+}	$\mathbf{p H}=-\log \left[\mathbf{H}^{+}\right]$	0.2 M HNO ${ }_{3}$	
Strong acid and weak acid	H^{+}and HA (ignore HA)	pH $=-\log \left[\mathrm{H}^{+}\right]$	$0.2 \mathrm{M} \mathrm{HNO}_{3}$ and 0.4 M acetic acid	
Strong acid and weak base	$\begin{aligned} & \mathrm{H}^{+} \text {and } \mathrm{HA} \\ & \text { (ignore HA) } \end{aligned}$	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	$0.2 \mathrm{M} \mathrm{HNO}_{3} \text { and } 0.1 \mathrm{M}$ sodium acetate	
Examples that use the strong base equation				
Strong base alone	OH^{-}alone	pOH $=-\log \left[\mathrm{OH}^{-}\right]$	0.1 M Ba(OH) ${ }_{2}$	
Strong base and weak base	OH^{-}and A^{-} (ignore A-)	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$0.1 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ and 0.1 M sodium acetate	
Strong base and weak acid	OH^{-}and A^{-} (ignore A^{-})	$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$	$0.4 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ and 0.1 M ammonium chloride	
Examples that use the weak acid equation				
Weak acid	$\mathbf{H A}$ or BH^{+}	$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}\right)^{\mathbf{1 / 2}}$	0.3 M acetic acid	
Equivalent strong acid and weak base	HA or BH^{+}	$\left.\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}}\right)^{1 / 2}$	0.1 M HCl and 0.1 M ammonia	
Examples that use the weak base equation				
Weak base	A^{-}or B	$\left[\mathrm{OH}^{-}\right]=\left(\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}$	0.2 M NH3	
Equivalent strong base and weak acid	A^{-}or B	$\left[\mathrm{OH}^{-}\right]=\left(\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}\right)^{1 / 2}$	0.1 M NaOH and 0.1 M acetic acid	
Examples that use the acid buffer equation				
Weak acid and conjugate weak base	HA and A	$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$	0.2 M acetic acid and 0.1 M sodium acetate	
Strong acid and weak base	HA and A	$\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\mathrm{a}} / \mathrm{C}_{\mathrm{b}}$	0.2 M HCl and 0.4 M sodium acetate	
Examples that use the basic buffer equation				
Weak base and conjugate weak acid	B and BH^{+}	$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} / \mathrm{C}_{\mathrm{a}}$	0.2 M ammonia and 0.3 M ammonium chloride	
Strong base and weak acie	B and BH^{+}	$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}} / \mathrm{C}_{\mathrm{a}}$	$0.3 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ and 0.4 M ammonium chloride	

