$\begin{aligned} & 17 \\ & 801 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ON} \\ \mathrm{ZOL} \\ \hline \end{gathered}$	PW	$\begin{gathered} w_{-1} \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{\exists} \\ 66 \\ \hline \end{gathered}$	${ }^{\circ 0_{86}}$	$\begin{array}{r} \text { Y马 }_{26} \\ \hline \end{array}$	$\begin{array}{r} \text { wo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ \mathrm{sb} \\ \hline \end{gathered}$	$d_{t 6}$	$\begin{gathered} (\angle \Sigma z) \\ \mathrm{d} \\ \mathrm{E} \end{gathered}$	${ }_{26}^{18 \varepsilon z}$	$\begin{gathered} 1 \varepsilon z \\ d_{16} \end{gathered}$	${ }_{\stackrel{1}{+}}$
L96t	to	$2+56$	92	E066t91	0¢ 291	\＆ 56685	STLLSI	${ }_{596 \text { ISI }}$	$9{ }^{\text {cosi }}$	（StI）	ャでゅt1	06	sı0tı
n7	9人	m_{\perp}	壮	OH	人0	$\mathrm{q} \perp$	pפ	$\mathrm{n} \exists$	us	ud	PN	$1{ }^{1}$	əО
12	02	69	89	29	99	s9	†9	$\varepsilon 9$	29	19	09	6 S	89

									$\begin{gathered} (992) \\ +W \\ 601 \end{gathered}$	$\begin{array}{c\|} \hline \text { (592) } \\ \mathrm{SH} \\ 801 \end{array}$	$\begin{aligned} & \text { (292) } \\ & 48 \end{aligned}$ $\angle 01$	$\begin{array}{c\|} \hline(\xi 9 z) \\ \mathrm{DS} \\ 90 \mathrm{l} \end{array}$	$\begin{gathered} (z 92) \\ 90 \\ \text { 901 } \end{gathered}$	$\begin{gathered} (192) \\ f+4 \\ +01 \end{gathered}$	$\begin{gathered} (L z z) \\ \partial \forall \\ 68 \end{gathered}$	$\begin{aligned} & (9 z z) \\ & \text { ey } \\ & 88 \\ & \hline \end{aligned}$	
$\begin{gathered} (z z \tau) \\ u y_{98} \end{gathered}$	$\stackrel{\text {（012）}}{1}+$	$\begin{aligned} & (602) \\ & \mathrm{O}_{\mathrm{d}} \\ & \mathrm{t} 8 \end{aligned}$	$\begin{array}{\|r\|} \hline 008680 \tau \\ !9 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \tau \angle L O Z \\ & \mathrm{qd} \\ & \text { z } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon 8 \varepsilon+00 \\ \perp_{18} \\ \hline 18 \end{gathered}$	$\begin{gathered} \stackrel{65}{6} 00 \mathrm{z}_{\mathrm{D}}^{\mathrm{H}} \\ 08 \end{gathered}$	s996961 n \forall 62	$\begin{gathered} 80^{\circ} \mathrm{s} 6 \mathrm{l} \\ \mathrm{td} \\ 82 \end{gathered}$	$\begin{gathered} 2 \pi z 61 \\ 11 \\ \\ \hline 12 \end{gathered}$	$\begin{gathered} \mathrm{z}^{2061} \\ \mathrm{SO}_{92} \end{gathered}$	$\begin{gathered} \angle 0 Z 981 \\ \partial \mathrm{y} \\ \mathrm{GL} \end{gathered}$	$\begin{gathered} \hline 58 \& 81 \\ M+L \end{gathered}$	$\begin{gathered} 6466081 \\ \mathrm{ED} \\ \mathrm{EL} \end{gathered}$	$\begin{gathered} 6+8 \mathrm{ILI} \\ \mathrm{H} \\ \mathrm{zL} \end{gathered}$	$\begin{gathered} 55068 \varepsilon 1 \\ 87 \\ \hline \quad 29 \end{gathered}$		
	$\begin{array}{cc} \text { sto } \\ & 1 \\ & \\ \hline \end{array}$	$\begin{gathered} 09 \angle \mathrm{LZI} \\ { }_{\mathrm{O}}{ }_{\mathrm{ZS}} \end{gathered}$	$\begin{gathered} \hline \angle 1.121 \\ \mathrm{qS} \\ \mathrm{LG} \end{gathered}$	$\begin{gathered} \begin{array}{c} 01 \angle 8 I I \\ \text { US }_{0 S} \end{array} \end{gathered}$	$\begin{gathered} 28+\mathrm{tII} \\ \mathrm{ul} \\ 6 \mathrm{ta} \end{gathered}$	$\mathrm{PO}_{8}^{\mathrm{It}+\mathrm{CII}}$	z898 Lor万 \forall Lt	$\begin{gathered} 2 t \cdot 901 \\ \text { Pd } \\ 90 \end{gathered}$	s 506 zol पप्」 st	$\begin{gathered} \text { L0' } 101 \\ \text { ny } \\ t o t \end{gathered}$	$\begin{aligned} & (86) \\ & \stackrel{\perp}{\varepsilon} \\ & \hline \end{aligned}$	$\begin{gathered} \hline+6: 96 \\ \text { OW } \\ \quad \mathrm{Zt} \\ \hline \end{gathered}$	$\begin{gathered} 5906 \mathrm{Zb} \\ \mathrm{qN} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} +2 z^{\prime} 16 \\ 1 Z^{0} \\ 0 t \end{gathered}$	$\begin{gathered} 650688 \\ \lambda_{6 \varepsilon} \end{gathered}$	$\begin{gathered} 29 \angle 8 \\ 1 S^{8 \varepsilon} \\ \hline \end{gathered}$	829t＇s8 qप्d Lع
$\begin{gathered} 08 \varepsilon 8 \\ 1 \gamma_{1} \\ 9 \varepsilon \end{gathered}$	$\begin{gathered} 50666 \\ 19 \\ 98 \end{gathered}$	$\begin{gathered} 968 L \\ \partial S_{t \varepsilon} \end{gathered}$	$\begin{array}{\|c\|} \hline 9766+L \\ s \forall \\ \varepsilon \varepsilon \\ \hline \end{array}$	$\begin{aligned} & 197 L \\ & \text { әפ } \\ & \text { z६ } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon L \cdot 69 \\ 89 \\ 1 \varepsilon \end{gathered}$	$\begin{gathered} 6 \cdot: 59 \\ \mathrm{uZ}^{2} \\ 0 \varepsilon \end{gathered}$	$\begin{gathered} 9+\varsigma \varepsilon 9 \\ \mathrm{n} \mathrm{~S}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6985 \\ & !\mathrm{N}_{8} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \varepsilon \varepsilon 685 \\ 0 O^{2} \\ L Z \end{gathered}$	$\begin{gathered} \text { L+8'ss } \\ \partial \mathrm{J} \\ 9 z \end{gathered}$	$0886+5$ uW sz	$\begin{gathered} 1966 \text { is } \\ 10 \\ \text { tz } \end{gathered}$	$\begin{gathered} \text { Sit } 60 s \\ \Lambda_{\varepsilon \tau} \\ \hline \end{gathered}$	$\begin{gathered} 88 \angle t \\ !\perp \\ \hline \quad 2 z \\ \hline \end{gathered}$		$\begin{aligned} & 8 \angle 0^{\circ 0 t} \\ & \text { ejo } \\ & 0 \end{aligned}$	$\begin{gathered} 8860 \cdot 6 \varepsilon \\ y_{1} \\ 61 \end{gathered}$
$\begin{gathered} 8+66 \varepsilon \\ 1 \forall^{81} \end{gathered}$	$\begin{gathered} \angle z s t^{\angle S} S \varepsilon \\ 1 O_{\angle 1} \end{gathered}$	$\begin{gathered} 990 \cdot \mathrm{Z} \mathrm{\varepsilon} \\ \mathrm{~S}_{91} \end{gathered}$	$\left.\begin{array}{\|c\|} 8 \varepsilon L G^{\circ} 0 \varepsilon \\ d_{\text {Gl }} \end{array} \right\rvert\,$			$\begin{aligned} & 2! \\ & \mathrm{gl} \end{aligned}$	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\stackrel{01}{\circ}$	88	8	Q^{L}	99	g	gঃt	$\begin{gathered} \varepsilon \varepsilon \\ \varepsilon \varepsilon \end{gathered}$		$\begin{gathered} 8686 \mathrm{zz} \\ \text { EN } \end{gathered}$
$\begin{gathered} \text { L6LIOR } \\ \partial \mathrm{N}_{01} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86681 \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { +666'S1 } \\ \mathrm{O}_{8} \end{gathered}$	$\stackrel{\angle 900}{ } \mathrm{~N}_{2}+1$	$\begin{gathered} 110 \mathrm{zl} \\ \mathrm{O}_{9} \\ \hline \end{gathered}$	$\begin{gathered} 11800 \\ \mathrm{~g}^{\prime} \\ \hline \end{gathered}$											$\begin{gathered} 2 \pi 10 \% \\ \partial g_{\mathrm{t}}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1+69 \\ & ! \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 9zoo't } \\ & \text { } \begin{array}{c} \text { OH } \\ \\ \hline \end{array} \\ & \hline \end{aligned}$	$\stackrel{\angle 1}{\forall L}$	$\begin{aligned} & 9! \\ & \forall 9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{9}{\text { G }} \\ & \forall G \end{aligned}$	$\stackrel{\rightharpoonup!}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{\varepsilon}{\forall 1} \\ & \forall \varepsilon \end{aligned}$											$\stackrel{z}{\forall}$	$\mathrm{Cl}_{6}^{6200^{\prime}}$
$\begin{aligned} & \hline 8! \\ & \forall 8 \end{aligned}$							SұU	UЈ	В	$1{ }^{\circ}$	Ә［	L	P00	$\mathrm{O}^{\text {d }}$			$\stackrel{1}{\forall 1}$

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Std emf 1217

20:07, basic, multiple choice, <1 min, wording-variable.

001

Predict the standard emf of the given cell

$$
\mathrm{C}(\mathrm{gr})\left|\mathrm{Sn}^{4+}(\mathrm{aq}), \mathrm{Sn}^{2+}(\mathrm{aq}) \| \mathrm{Pb}^{4+}(\mathrm{aq}), \mathrm{Pb}^{2+}\right| \mathrm{Pt}(\mathrm{~s})
$$

1. +1.52 V correct
2. +0.75 V
3. +0.37 V
4. +0.52 V
5. +2.14 V
6. +1.34 V

Explanation:

Identify the cathode (right-side) and anode (left-side) reactions and potentials from the cell diagram.

At the cathode, $\mathrm{Pb}^{4+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq}) \quad E^{\circ}=+1.67 \mathrm{~V}$

At the anode,
$\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+2 e^{-}-E^{\circ}=-0.15 \mathrm{~V}$

$$
\begin{aligned}
E_{\text {cell }}^{\circ} & =E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ} \\
& =+1.67 \mathrm{~V}-(+0.15 \mathrm{~V}) \\
& =+1.52 \mathrm{~V}
\end{aligned}
$$

Msci 211220

20:07, general, multiple choice, >1 min, fixed.

002

Consider the half-reactions
$\mathrm{Mn}^{2+}+2 e^{-} \rightarrow \mathrm{Mn}$

$$
E^{0}=-1.029 \mathrm{~V}
$$

$\mathrm{Ga}^{3+}+3 e^{-} \rightarrow \mathrm{Ga}$
$E^{0}=-0.560 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe}$
$E^{0}=-0.409 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 e^{-} \rightarrow \mathrm{Sn} \quad E^{0}=-0.136 \mathrm{~V}$

Of the species listed, the strongest oxidizing agent is

1. Sn^{2+} correct
2. Mn^{2+}
3. Mn
4. Sn
5. Ga^{+3}

Explanation:

Oxidizing agents get reduced. As E_{0} increases, the easier it is for the species to be reduced. Since Sn^{2+} has the biggest E_{0}, it is reduced the easiest, making it the strongest oxidizing agent.

ChemPrin3e T12 36

20:09, basic, multiple choice, $<1 \mathrm{~min}$, fixed.
003
Consider the cell

$$
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Fe}^{2+}(\mathrm{aq})\right| \mathrm{Fe}(\mathrm{~s})
$$

at standard conditions.
Calculate the value of $\Delta G_{\mathrm{r}}^{\circ}$ for the reaction that occurs when current is drawn from this cell.

$$
\begin{aligned}
& \text { 1. }-62 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \text { correct } \\
& \text { 2. }-230 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \text { 3. }+62 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \text { 4. }+230 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
& \text { 5. }-31 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Explanation:

Mlib 080085

20:12, basic, multiple choice, $>1 \mathrm{~min}$, fixed.

$$
004
$$

A battery has two terminals labeled positive and negative.

As the battery discharges, electrons flow from the ? terminal to the \qquad terminal through the external circuit and \qquad ? reaction occurs at the positive terminal.

1. positive; negative; a reduction
2. postive; negative; an oxidation
3. negative; positive; a reduction correct
4. negative; positive; an oxidation
5. positive; negative; an acid/base

Explanation:

In a voltaic cell electrons flow from the negative to the positive terminals. Reduction occurs at the positive terminal.

Mlib 080097

20:11, general, multiple choice, >1 min, fixed. 005
Which of the following batteries could not be recharged?

1. dry cell correct
2. lead storage battery
3. nickel-cadium battery

Explanation:

Msci 210002
20:08, general, multiple choice, $>1 \mathrm{~min}$, fixed. 006
Calculate the potential for the cell indicated:

$\mathrm{Fe}\left\|\mathrm{Fe}^{2+}\left(10^{-3} \mathrm{M}\right) \\| \mathrm{Pb}^{2+}\left(10^{-5} \mathrm{M}\right)\right\| \mathrm{Pb}$	
$\mathrm{Pb}^{2+}+2 e^{-} \rightarrow \mathrm{Pb}$	$E^{0}=-0.126 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe}$	$E^{0}=-0.440 \mathrm{~V}$

1. 0.255 V correct

2. 0.432 V
3. 0.373 V
4. 0.196 V

5. 0.284 V

Explanation:

The overall reaction is

$$
\mathrm{Fe}+\mathrm{Pb}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Pb}
$$

Please notice that since the concentrations are not 1 M , the Nernst equation must be used.

In this cell notation, the anode is located on the left of the salt bridge $\|$ and the cathode on the right. So first calculate

$$
\begin{aligned}
E_{\text {cell }}^{0} & =E_{\text {cathode }}-E_{\text {anode }}^{0} \\
& =-0.126 \mathrm{~V}-(-0.440) \mathrm{V}=0.314 \mathrm{~V}
\end{aligned}
$$

Using the Nernst Equation

$$
\begin{aligned}
E_{\text {cell }} & =E_{\text {cell }}^{0}-\frac{0.05916}{n} \log \mathrm{Q} \\
& =0.314 \mathrm{~V}-\frac{0.05916}{2} \log \left(\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Pb}^{2+}\right]}\right) \\
& =0.314 \mathrm{~V}-\frac{0.05916}{2} \log \left(\frac{10^{-3}}{10^{-5}}\right) \\
& =0.25484 \mathrm{~V}
\end{aligned}
$$

Msci 210606

20:05, general, multiple choice, $>1 \mathrm{~min}$, fixed. 007
What weight of Cl_{2} gas will be produced by electrolysis of molten NaCl when a current of 4.35 amps flows through it for 15.0 hours? $(\mathrm{Cl}$ $=35.457 \mathrm{~g} / \mathrm{mol}$)

1. 86.3 g correct

2. 19.8 g
3. 0.0250 g
4. 1.44 g
5. 43.2 g

Explanation:

Msci 040900
20:01, general, multiple choice, >1 min, fixed.

Using the smallest possible integer coefficients to balance the redox equation

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{-2} \rightarrow \mathrm{Mn}^{+2}+\mathrm{CO}_{2}
$$

(acidic solution), the coefficient for $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is

1. 5. correct

2. 2.
1. 4.
1. 7.
1. The correct coefficient is not given.

Explanation:

The oxidation number of C changes from +3 to +4 , so C is oxidized. The oxidation number of Mn changes from +7 to +2 , so Mn is reduced. We set up oxidation and reduction half-reactions:

Red: $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
Oxid: $\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}$
Mn atoms are balanced. We need $2 \mathrm{CO}_{2}$ molecules to balance C :

Oxid: $\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}$
Since this is an acidic solution, we use $\mathrm{H}_{2} \mathrm{O}$ and H^{+}to balance O and H atoms, adding the $\mathrm{H}_{2} \mathrm{O}$ to the side needing oxygen:

Red: $8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Oxid: $\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}$
We balance the total charge in each halfreaction by adding electrons. In the preceding reduction reaction there is a total charge of +7 on the left and +2 on the right. Five electrons are added to the left:

Red: $5 e^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow$

$$
\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

Oxid: $\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 e^{-}$
The number of electrons gained by Mn must equal the number of electrons lost by C. We multiply the reduction reaction by 2 and the oxidation reaction by 5 to balance the electrons:

Red: $10 e^{-}+16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \rightarrow$

$$
2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
$$

Oxid: $5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 10 \mathrm{CO}_{2}+10 e^{-}$

Adding the half-reactions gives the overall balanced equation:

$$
\begin{aligned}
& 5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \rightarrow \\
& \quad 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

