		œ	<u> </u>		σ ι	~		ω	10		-			-			ω			-	
(223)	Ţ	7	32.9054	Cs	ŭ	85.4678	Rb	7	39.0983	ㅈ	9	22.9898	Na	1	6.941	□.		1.0079	т		- 1
(226)	Ra	88	137.327	Ba	96	87.62	လို	8	40.078	Ca	20	24.3050	Mg	12	9.0122	Be	4	2	2A		-
(227)	Ac	68	138.9055	La	57	88.9059	~	39	44.9559	Sc	21	ω	а В								
(261)	Ŗŕ	104	178.49	Ť	72	91.224	Ŋ	40	47.88	Ę	22	4	4B								Peri
(262)	Db	105	180.9479	Ta	73	92.9064	٨b	41	50.9415	<	23	თ	ъВ								odic
(263)	gS	106	183.85	٤	74	95.94	Mo	42	51.9961	ç	24	6	6B								Tal
(262)	Bh	107	186.207	Re	75	(98)	7	43	54.9380	Mn	25	7	7B								ble
(265)	Hs	108	190.2	So	76	101.07	Ru	44	55.847	Fe	26	8	7								of th
(266)	Mt	109	192.22	r	77	102.9055	Rh	45	58.9332	ဂွ	27	9	– 88 –								e El
			195.08	Pţ	82	106.42	Pd	46	58.69	<u>Z</u>	28	10									eme
			196.9665	Au	62	107.8682	Ag	47	63.546	С	29	11	1 B								ints
			200.59	Hg	08	112.411	S	48	65.39	Zn	30	12	2B								
			204.3833	Ⅎ	81	114.82	ln	49	69.723	Ga	31	26.9815	A	13	10.811	Β	5	13	ЗA		
			207.2	Pb	82	118.710	Sn	50	72.61	Ge	32	28.0855	<u>ง</u>	14	12.011	റ	6	14	4A		
			208.9804	<u>D</u>	83	121.75	Sp	51	74.9216	As	33	30.9738	ס	15	14.0067	z	7	15	5A		
			(209)	Po	84	127.60	Te	52	78.96	Se	34	32.066	ഗ	16	15.9994	0	8	16	6A		
			(210)	At	85	126.9045	_	53	79.904	Βŗ	35	35.4527	<u>0</u>	17	18.9984	П	9	17	7A		
			(222)	Rn	98	131.39	Xe	54	83.80	Ţ	36	39.948	Ar	18	20.1797	Ne	10	4.0026	He	N	¹⁸ A

1 63 64 Eu Gd	1 63 64 65 Eu Gd Tb	1 Eu Gd Tb Dy	1 Eu Gd Tb Dy Ho	1 Eu Gd Tb Dy Ho Er	1 Eu Gd Tb Dv Ho Er Tm
64 Gd	64 65 Gd Tb	64 65 66 Gd Tb Dy	64 65 66 67 Gd Tb Dy Ho	64 65 66 67 68 Gd Tb Dy Ho Er	64 65 66 67 68 69 Gd Tb Dy Ho Er Tm
	Tb	65 66 Tb Dy	65 66 67 Tb Dy Ho	65 66 67 68 Tb Dy Ho Er	65 66 67 68 69 Tb Dy Ho Er Tm
66 67 68 69 70 Dy Ho Er Tm Yb	67 68 69 70 Ho Er Tm Yb	68 69 70 Er Tm Yb	69 70 Tm Yb	Yb 07	

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

$Std\ emf\ 12\ 17$

20:07, basic, multiple choice, < 1 min, wording-variable.

001

Predict the standard emf of the given cell $C(gr) | Sn^{4+}(aq), Sn^{2+}(aq) ||$ $Pb^{4+}(aq), Pb^{2+} | Pt(s)$

1. +1.52 V correct

- 2. +0.75 V
- 3. +0.37 V

4.+0.52 V

5. +2.14 V

6. +1.34 V

Explanation:

Identify the cathode (right-side) and anode (left-side) reactions and potentials from the cell diagram.

At the cathode, $Pb^{4+}(aq) + 2e^- \rightarrow Pb^{2+}(aq) \quad E^\circ = +1.67 \text{ V}$ At the anode, $Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^- - E^\circ = -0.15 \text{ V}$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$
$$= +1.67 \text{ V} - (+0.15 \text{ V})$$
$$= +1.52 \text{ V}$$

Msci 21 1220

20:07, general, multiple choice, $> 1 \min$, fixed. **002**

$E^0 = -1.029 \text{ V}$
$E^0 = -0.560 \text{ V}$
$E^0 = -0.409 \text{ V}$
$E^0 = -0.136 \text{ V}$

Of the species listed, the strongest oxidizing agent is

Sn²⁺ correct
 Mn²⁺
 Mn
 Sn

5. Ga⁺³

Explanation:

Oxidizing agents get reduced. As E_0 increases, the easier it is for the species to be reduced. Since Sn^{2+} has the biggest E_0 , it is reduced the easiest, making it the strongest oxidizing agent.

ChemPrin3e T12 36

20:09, basic, multiple choice, < 1 min, fixed. 003

Consider the cell

 $Zn(s)\,|\,Zn^{2+}(aq)\,||\,Fe^{2+}(aq)\,|\,Fe(s)$

at standard conditions.

Calculate the value of $\Delta G_{\rm r}^{\circ}$ for the reaction that occurs when current is drawn from this cell.

1.
$$- 62 \text{ kJ} \cdot \text{mol}^{-1}$$
 correct
2. $- 230 \text{ kJ} \cdot \text{mol}^{-1}$
3. $+ 62 \text{ kJ} \cdot \text{mol}^{-1}$
4. $+ 230 \text{ kJ} \cdot \text{mol}^{-1}$
5. $- 31 \text{ kJ} \cdot \text{mol}^{-1}$

Explanation:

Mlib 08 0085

20:12, basic, multiple choice, > 1 min, fixed. 004

A battery has two terminals labeled positive and negative.

As the battery discharges, electrons flow from the <u>?</u> terminal to the <u>?</u> terminal through the external circuit and <u>?</u> reaction occurs at the positive terminal.

- 1. positive; negative; a reduction
- 2. postive; negative; an oxidation
- $\mathbf{3.}$ negative; positive; a reduction **correct**
- 4. negative; positive; an oxidation
- 5. positive; negative; an acid/base

Explanation:

In a voltaic cell electrons flow from the negative to the positive terminals. Reduction occurs at the positive terminal.

$\mathbf{Mlib} \ \mathbf{08} \ \mathbf{0097}$

20:11, general, multiple choice, $> 1 \min$, fixed. 005

Which of the following batteries could not be recharged?

1. dry cell correct

- 2. lead storage battery
- 3. nickel-cadium battery

Explanation:

4.0.196 V

$\operatorname{Msci}\,21\ 0002$

20:08, general, multiple choice, > 1 min, fixed. **006** Calculate the potential for the cell indicated: Fe | Fe²⁺ (10⁻³ M) || Pb²⁺ (10⁻⁵ M) | Pb Pb²⁺ + 2 $e^- \rightarrow$ Pb $E^0 = -0.126$ V Fe²⁺ + 2 $e^- \rightarrow$ Fe **1.** 0.255 V correct **2.** 0.432 V **3.** 0.373 V **5.** 0.284 V

Explanation:

The overall reaction is

$$Fe + Pb^{2+} \rightarrow Fe^{2+} + Pb$$

Please notice that since the concentrations are not 1 M, the Nernst equation must be used.

In this cell notation, the anode is located on the left of the salt bridge || and the cathode on the right. So first calculate

$$E_{\text{cell}}^{0} = E_{\text{cathode}} - E_{\text{anode}}^{0}$$

= -0.126 V - (-0.440) V = 0.314 V

Using the Nernst Equation

$$E_{\text{cell}} = E_{\text{cell}}^0 - \frac{0.05916}{n} \log Q$$

= 0.314 V - $\frac{0.05916}{2} \log \left(\frac{[\text{Fe}^{2+}]}{[\text{Pb}^{2+}]} \right)$
= 0.314 V - $\frac{0.05916}{2} \log \left(\frac{10^{-3}}{10^{-5}} \right)$
= 0.25484 V

Msci 21 0606

20:05, general, multiple choice, > 1 min, fixed. 007

What weight of Cl_2 gas will be produced by electrolysis of molten NaCl when a current of 4.35 amps flows through it for 15.0 hours? (Cl = 35.457 g/mol)

86.3 g correct
 19.8 g
 0.0250 g
 1.44 g
 43.2 g
 Explanation:

 $\begin{array}{c} {\bf Msci \ 04 \ 0900}\\ 20:01, \, {\rm general}, \, {\rm multiple \ choice}, > 1 \, {\rm min}, \, {\rm fixed}.\\ {\bf 008} \end{array}$

Using the smallest possible integer coefficients to balance the redox equation

$$\mathrm{MnO_4^-} + \mathrm{C_2O_4^{-2}} \rightarrow \mathrm{Mn^{+2}} + \mathrm{CO_2}$$

(acidic solution), the coefficient for $C_2 O_4^{2-}$ is

1. 5. correct

2. 2.

3. 4.

4. 7.

5. The correct coefficient is not given.

Explanation:

The oxidation number of C changes from +3to +4, so C is oxidized. The oxidation number of Mn changes from +7 to +2, so Mn is reduced. We set up oxidation and reduction half-reactions:

 $\begin{array}{l} {\rm Red:} \ {\rm MnO}_4^- \rightarrow {\rm Mn}^{2+} \\ {\rm Oxid:} \ {\rm C}_2 {\rm O}_4^{2-} \rightarrow {\rm CO}_2 \end{array}$ Mn atoms are balanced. We need 2 CO_2

molecules to balance C:

Oxid: $C_2O_4^{2-} \rightarrow 2 CO_2$ Since this is an acidic solution, we use H_2O and H^+ to balance O and H atoms, adding the H_2O to the side needing oxygen:

Red: $8 \,\mathrm{H^+} + \mathrm{MnO_4^-} \rightarrow \mathrm{Mn^{2+}} + 4 \,\mathrm{H_2O}$ Oxid: $C_2 O_4^{2-} \rightarrow 2 CO_2$

We balance the total charge in each halfreaction by adding electrons. In the preceding reduction reaction there is a total charge of +7 on the left and +2 on the right. Five electrons are added to the left:

Red:
$$5e^- + 8H^+ + MnO_4^- \rightarrow Mn^{2+} + 4$$

 H_2O

Oxid: $C_2 O_4^{2-} \to 2 CO_2 + 2 e^{-}$

The number of electrons gained by Mn must equal the number of electrons lost by C. We multiply the reduction reaction by 2 and the oxidation reaction by 5 to balance the electrons:

Red:
$$10 e^- + 16 H^+ + 2 MnO_4^- \rightarrow 2 Mn^{2+} + 8 H_2O$$

Oxid: $5 C_2O_4^{2-} \rightarrow 10 CO_2 + 10 e^-$

Adding the half-reactions gives the overall balanced equation:

$$5 C_2 O_4^{2-} + 16 H^+ + 2 MnO_4^- \rightarrow 10 CO_2 + 2 Mn^{2+} + 8 H_2 O$$