$\begin{aligned} & 17 \\ & 801 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ON} \\ \mathrm{ZOL} \\ \hline \end{gathered}$	PW	$\begin{gathered} w_{-1} \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{\exists} \\ 66 \\ \hline \end{gathered}$	${ }^{\circ 0_{86}}$	$\begin{array}{r} \text { Y马 }_{26} \\ \hline \end{array}$	$\begin{array}{r} \text { wo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ \mathrm{sb} \\ \hline \end{gathered}$	$d_{t 6}$	$\begin{gathered} (\angle \Sigma z) \\ \mathrm{d} \\ \mathrm{E} \end{gathered}$	${ }_{26}^{18 \varepsilon z}$	$\begin{gathered} 1 \varepsilon z \\ d_{16} \end{gathered}$	${ }_{\stackrel{1}{+}}$
L96t	to	$2+56$	92	E066t91	0¢ 291	\＆ 56685	STLLSI	${ }_{596 \text { ISI }}$	$9{ }^{\text {cosi }}$	（StI）	ャでゅt1	06	sı0tı
n7	9人	m_{\perp}	壮	OH	人0	$\mathrm{q} \perp$	pפ	$\mathrm{n} \exists$	us	ud	PN	$1{ }^{1}$	əО
12	02	69	89	29	99	s9	†9	$\varepsilon 9$	29	19	09	6 S	89

									$\begin{gathered} (992) \\ +W \\ 601 \end{gathered}$	$\begin{array}{c\|} \hline \text { (592) } \\ \mathrm{SH} \\ 801 \end{array}$	$\begin{aligned} & \text { (292) } \\ & 48 \end{aligned}$ $\angle 01$	$\begin{array}{c\|} \hline(\xi 9 z) \\ \mathrm{DS} \\ 90 \mathrm{l} \end{array}$	$\begin{gathered} (z 92) \\ 90 \\ \text { 901 } \end{gathered}$	$\begin{gathered} (192) \\ f+4 \\ +01 \end{gathered}$	$\begin{gathered} (L z z) \\ \partial \forall \\ 68 \end{gathered}$	$\begin{aligned} & (9 z z) \\ & \text { ey } \\ & 88 \\ & \hline \end{aligned}$	
$\begin{gathered} (z z \tau) \\ u y_{98} \end{gathered}$	$\stackrel{\text {（012）}}{1}+$	$\begin{aligned} & (602) \\ & \mathrm{O}_{\mathrm{d}} \\ & \mathrm{t} 8 \end{aligned}$	$\begin{array}{\|r\|} \hline 008680 \tau \\ !9 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \tau \angle L O Z \\ & \mathrm{qd} \\ & \text { z } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon 8 \varepsilon+00 \\ \perp_{18} \\ \hline 18 \end{gathered}$	$\begin{gathered} \stackrel{65}{6} 00 \mathrm{z}_{\mathrm{D}}^{\mathrm{H}} \\ 08 \end{gathered}$	s996961 n \forall 62	$\begin{gathered} 80^{\circ} \mathrm{s} 6 \mathrm{l} \\ \mathrm{td} \\ 82 \end{gathered}$	$\begin{gathered} 2 \pi z 61 \\ 11 \\ \\ \hline 12 \end{gathered}$	$\begin{gathered} \mathrm{z}^{2061} \\ \mathrm{SO}_{92} \end{gathered}$	$\begin{gathered} \angle 0 Z 981 \\ \partial \mathrm{y} \\ \mathrm{GL} \end{gathered}$	$\begin{gathered} \hline 58 \& 81 \\ M+L \end{gathered}$	$\begin{gathered} 6466081 \\ \mathrm{ED} \\ \mathrm{EL} \end{gathered}$	$\begin{gathered} 6+8 \mathrm{ILI} \\ \mathrm{H} \\ \mathrm{zL} \end{gathered}$	$\begin{gathered} 55068 \varepsilon 1 \\ 87 \\ \hline \quad 29 \end{gathered}$		
	$\begin{array}{cc} \text { sto } \\ & 1 \\ & \\ \hline \end{array}$	$\begin{gathered} 09 \angle \mathrm{LZI} \\ { }_{\mathrm{O}}{ }_{\mathrm{ZS}} \end{gathered}$	$\begin{gathered} \hline \angle 1.121 \\ \mathrm{qS} \\ \mathrm{LG} \end{gathered}$	$\begin{gathered} \begin{array}{c} 01 \angle 8 I I \\ \text { US }_{0 S} \end{array} \end{gathered}$	$\begin{gathered} 28+\mathrm{tII} \\ \mathrm{ul} \\ 6 \mathrm{ta} \end{gathered}$	$\mathrm{PO}_{8}^{\mathrm{It}+\mathrm{CII}}$	z898 Lor万 \forall Lt	$\begin{gathered} 2 t \cdot 901 \\ \text { Pd } \\ 90 \end{gathered}$	s 506 zol पप्」 st	$\begin{gathered} \text { L0' } 101 \\ \text { ny } \\ t o t \end{gathered}$	$\begin{aligned} & (86) \\ & \stackrel{\perp}{\varepsilon} \\ & \hline \end{aligned}$	$\begin{gathered} \hline+6: 96 \\ \text { OW } \\ \quad \mathrm{Zt} \\ \hline \end{gathered}$	$\begin{gathered} 5906 \mathrm{Zb} \\ \mathrm{qN} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} +2 z^{\prime} 16 \\ 1 Z^{0} \\ 0 t \end{gathered}$	$\begin{gathered} 650688 \\ \lambda_{6 \varepsilon} \end{gathered}$	$\begin{gathered} 29 \angle 8 \\ 1 S^{8 \varepsilon} \\ \hline \end{gathered}$	829t＇s8 qप्d Lع
$\begin{gathered} 08 \varepsilon 8 \\ 1 \gamma_{1} \\ 9 \varepsilon \end{gathered}$	$\begin{gathered} 50666 \\ 19 \\ 98 \end{gathered}$	$\begin{gathered} 968 L \\ \partial S_{t \varepsilon} \end{gathered}$	$\begin{array}{\|c\|} \hline 9766+L \\ s \forall \\ \varepsilon \varepsilon \\ \hline \end{array}$	$\begin{aligned} & 197 L \\ & \text { әפ } \\ & \text { z६ } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon L \cdot 69 \\ 89 \\ 1 \varepsilon \end{gathered}$	$\begin{gathered} 6 \cdot: 59 \\ \mathrm{uZ}^{2} \\ 0 \varepsilon \end{gathered}$	$\begin{gathered} 9+\zeta \varepsilon 9 \\ \mathrm{n} \mathrm{~S}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6985 \\ & !\mathrm{N}_{8} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \varepsilon \varepsilon 685 \\ 0 O^{2} \\ L Z \end{gathered}$	$\begin{gathered} \text { L+8'ss } \\ \partial \mathrm{J} \\ 9 z \end{gathered}$	$0886+5$ uW sz	$\begin{gathered} 1966 \text { is } \\ 10 \\ \text { tz } \end{gathered}$	$\begin{gathered} \text { Sit } 60 s \\ \Lambda_{\varepsilon \tau} \\ \hline \end{gathered}$	$\begin{gathered} 88 \angle t \\ !\perp \\ \hline \quad 2 z \\ \hline \end{gathered}$		$\begin{aligned} & 8 \angle 0^{\circ 0 t} \\ & \text { ejo } \\ & 0 \end{aligned}$	$\begin{gathered} 8860 \cdot 6 \varepsilon \\ y_{1} \\ 61 \end{gathered}$
$\begin{gathered} 8+66 \varepsilon \\ 1 \forall^{81} \end{gathered}$	$\begin{gathered} \angle z s t^{\angle S} \leq \varepsilon \\ 1 O_{\angle 1} \end{gathered}$	$\begin{gathered} 990 \cdot \mathrm{Z} \mathrm{\varepsilon} \\ \mathrm{~S}_{91} \end{gathered}$	$\left.\begin{array}{\|c\|} 8 \varepsilon L G^{\circ} 0 \varepsilon \\ d_{\text {Gl }} \end{array} \right\rvert\,$			$\begin{aligned} & 2! \\ & \mathrm{gl} \end{aligned}$	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\stackrel{01}{\circ}$	88	8	Q^{L}	99	g	gঃt	$\begin{gathered} \varepsilon \varepsilon \\ \varepsilon \varepsilon \end{gathered}$		$\begin{gathered} 8686 \mathrm{zz} \\ \text { EN } \end{gathered}$
$\begin{gathered} \text { L6LIOR } \\ \partial \mathrm{N}_{01} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86681 \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { +666'S1 } \\ \mathrm{O}_{8} \end{gathered}$	$\stackrel{\angle 900}{ } \mathrm{~N}_{2}+1$	$\begin{gathered} 110 \mathrm{zl} \\ \mathrm{O}_{9} \\ \hline \end{gathered}$	$\begin{gathered} 11800 \\ \mathrm{~g}^{\prime} \\ \hline \end{gathered}$											$\begin{gathered} 2 \pi 10 \% \\ \partial g_{\mathrm{t}}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1+69 \\ & ! \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 9zoo't } \\ & \text { } \begin{array}{c} \text { OH } \\ \\ \hline \end{array} \\ & \hline \end{aligned}$	$\stackrel{\angle 1}{\forall L}$	$\begin{aligned} & 9! \\ & \forall 9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{9}{\text { G }} \\ & \forall G \end{aligned}$	$\stackrel{\rightharpoonup!}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{\varepsilon}{\forall 1} \\ & \forall \varepsilon \end{aligned}$											$\stackrel{z}{\forall}$	$\mathrm{Cl}_{6}^{6200^{\prime}}$
$\begin{aligned} & \hline 8! \\ & \forall 8 \end{aligned}$							SұU	UЈ	В	$1{ }^{\circ}$	Ә［	L	P00	$\mathrm{O}^{\text {d }}$			$\stackrel{1}{\forall 1}$

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Msci 180924

18:02, basic, multiple choice, >1 min, fixed.

001

Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ is a diprotic acid with $K_{\mathrm{a} 1}=4.2 \times 10^{-7}$ and $K_{\mathrm{a}}=4.8 \times 10^{-11}$. The ion product for water is $K_{\mathrm{w}}=1.0 \times 10^{-14}$.

What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration in a saturated carbonic acid solution that is 0.037 molar?

1. $3.7 \times 10^{-20} \mathrm{M}$
2. $7.4 \times 10^{-2} \mathrm{M}$
3. $6.5 \times 10^{-4} \mathrm{M}$
4. $1.2 \times 10^{-4} \mathrm{M}$ correct
5. $4.2 \times 10^{-7} \mathrm{M}$

Explanation:

Msci 460013

18:01, basic, multiple choice, $>1 \mathrm{~min}$, fixed. 002
What is the pH of a $2 \times 10^{-3} \mathrm{M} \mathrm{HF} ? K_{\mathrm{a}}$ for HF is 7.2×10^{-4}.

1. 2.92
2. 3.05 correct
3. 6.8

4. 11.08

Explanation:

PH 107778

18:01, general, multiple choice, $>1 \mathrm{~min}$, wording-variable.

003

What is the pH of 0.15 M NaHSO 3 (aq) if $K_{\mathrm{a} 1}=0.015, K_{\mathrm{a} 2}=1.2 \times 10^{-7}, \mathrm{p} K_{\mathrm{a} 1}=1.81$
and $\mathrm{p} K_{\mathrm{a} 2}=6.91$?

1. 4.36 correct

2. 8.31
3. 7.82
4. 6.92
5. 3.02
6. None of these

Explanation:

$$
\mathrm{p} K_{\mathrm{a} 1}=1.81 \quad \mathrm{p} K_{\mathrm{a} 2}=6.91
$$

$$
M=0.15 \mathrm{M}
$$

This is a salt of a polyprotic acid. The salt will dissociate into solution. The cation is an extremely weak acid and does not affect the equilibrium. The anion can then either protonate or deprotonate; the extent to which these processes occur is determined by the relative values of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$. The pH is

$$
\begin{aligned}
\mathrm{pH} & =\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) \\
& =\frac{1}{2}(1.81+6.91) \\
& =4.36
\end{aligned}
$$

Note the pH of a salt solution of a polyprotic acid is independent of the concentration of the salt as long as it is not extremely dilute.

ChemPrin3e T10 38

18:99, general, multiple choice, $<1 \mathrm{~min}$, fixed. 004
Write the charge balance equation for a dilute aqueous solution of HI .

1. $\left[\mathrm{I}^{-}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
3. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{I}^{-}\right]$
4. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{I}^{-}\right]+\left[\mathrm{OH}^{-}\right]$correct
5. $[\mathrm{HI}]_{\text {initial }}=\left[\mathrm{I}^{-}\right]$

Explanation:

007

ChemPrin3e T10 54

18:99, general, multiple choice, $<1 \mathrm{~min}$, fixed. 005
For a solution labeled " $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$, "

1. $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$is greater than 0.10 M .
2. $\left[\mathrm{H}^{+}\right]=0.30 \mathrm{M}$.
3. $\left[\mathrm{PO}_{4}^{3-}\right]=0.10 \mathrm{M}$.
4. $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$.
5. $\left[\mathrm{H}^{+}\right]$is less than 0.10 M . correct

Explanation:

Equil Sol

18:99, general, multiple choice, $<1 \mathrm{~min}$, 006
A weakly acidic solution with a pH near 7 is formed when 1×10^{-7} moles of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is added to 1 liter of water.

How many equations must be solved in order to accurately calculate all of the unknown concentrations formed at equilibrium in solution?

1. 5 correct

2. 4
3. 3
4. 2
5. 1
6. 6
7. 7

Explanation:

There are 5 ions that make contributions in this solution: $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HSO}_{3}^{-}, \mathrm{SO}_{3}^{2-}, \mathrm{H}^{+}$, and OH^{-}.

Msci 180907

18:02, basic, multiple choice, $>1 \mathrm{~min}$, fixed.

What is the concentration of SO_{4}^{2-} in 2.0 M $\mathrm{H}_{2} \mathrm{SO}_{4} ? K_{\mathrm{a} 1}$ is strong and $K_{\mathrm{a} 2}=1.2 \times 10^{-2}$.

1. $2.0 \times 10^{-1} \mathrm{M}$
2. $1.2 \times 10^{-2} \mathrm{M}$ correct
3. $4.0 \times 10^{-1} \mathrm{M}$
4. $1.0 \times 10^{-7} \mathrm{M}$
5. $4.0 \times 10^{-2} \mathrm{M}$

Explanation:

DAL 19002

18:03, general, multiple choice, $<1 \mathrm{~min}$, fixed. 008
There are three sources of protons to be considered in calculating the pH of a solution formed when equal volumes of $1 \times 10^{-8} \mathrm{M}$ HCl and $1 \times 10^{-2} \mathrm{M}$ acetic acid (HAc) are added to water. Assume a K_{a} of 1.8×10^{-5} for acetic acid.

Rank from most to least, the concentration of protons contributed at equilibrium from $\mathrm{HCl}, \mathrm{HAc}$ and $\mathrm{H}_{2} \mathrm{O}$.

1. $\mathrm{HCl}, \mathrm{HAc}, \mathrm{H}_{2} \mathrm{O}$
2. $\mathrm{HAc}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{HAc}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}$ correct
4. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{HAc}$
5. $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HAc}$

Explanation:

