$\begin{aligned} & 17 \\ & 801 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ON} \\ \mathrm{ZOL} \\ \hline \end{gathered}$	PW	$\begin{gathered} w_{-1} \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{\exists} \\ 66 \\ \hline \end{gathered}$	${ }^{\circ 0_{86}}$	$\begin{array}{r} \text { Y马 }_{26} \\ \hline \end{array}$	$\begin{array}{r} \text { wo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ \mathrm{sb} \\ \hline \end{gathered}$	$d_{t 6}$	$\begin{gathered} (\angle \Sigma z) \\ \mathrm{d} \\ \mathrm{E} \end{gathered}$	${ }_{26}^{18 \varepsilon z}$	$\begin{gathered} 1 \varepsilon z \\ d_{16} \end{gathered}$	${ }_{\stackrel{1}{+}}$
L96t	to	$2+56$	92	E066t91	0¢ 291	\＆ 56685	STLLSI	${ }_{596 \text { ISI }}$	$9{ }^{\text {cosi }}$	（StI）	ャでゅt1	06	sı0tı
n7	9人	m_{\perp}	壮	OH	人0	$\mathrm{q} \perp$	pפ	$\mathrm{n} \exists$	us	ud	PN	$1{ }^{1}$	əО
12	02	69	89	29	99	s9	†9	$\varepsilon 9$	29	19	09	6 S	89

									$\begin{gathered} (992) \\ +W \\ 601 \end{gathered}$	$\begin{array}{c\|} \hline \text { (592) } \\ \mathrm{SH} \\ 801 \end{array}$	$\begin{aligned} & \text { (292) } \\ & 48 \end{aligned}$ $\angle 01$	$\begin{array}{c\|} \hline(\xi 9 z) \\ \mathrm{DS} \\ 90 \mathrm{l} \end{array}$	$\begin{gathered} (z 92) \\ 90 \\ \text { 901 } \end{gathered}$	$\begin{gathered} (192) \\ f+4 \\ +01 \end{gathered}$	$\begin{gathered} (L z z) \\ \partial \forall \\ 68 \end{gathered}$	$\begin{aligned} & (9 z z) \\ & \text { ey } \\ & 88 \\ & \hline \end{aligned}$	
$\begin{gathered} (z z \tau) \\ u y_{98} \end{gathered}$	$\stackrel{\text {（012）}}{1}+$	$\begin{aligned} & (602) \\ & \mathrm{O}_{\mathrm{d}} \\ & \mathrm{t} 8 \end{aligned}$	$\begin{array}{\|r\|} \hline 008680 \tau \\ !9 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \tau \angle L O Z \\ & \mathrm{qd} \\ & \text { z } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon 8 \varepsilon+00 \\ \perp_{18} \\ \hline 18 \end{gathered}$	$\begin{gathered} \stackrel{65}{6} 00 \mathrm{z}_{\mathrm{D}}^{\mathrm{H}} \\ 08 \end{gathered}$	s996961 n \forall 62	$\begin{gathered} 80^{\circ} \mathrm{s} 6 \mathrm{l} \\ \mathrm{td} \\ 82 \end{gathered}$	$\begin{gathered} 2 \pi z 61 \\ 11 \\ \\ \hline 12 \end{gathered}$	$\begin{gathered} \mathrm{z}^{2061} \\ \mathrm{SO}_{92} \end{gathered}$	$\begin{gathered} \angle 0 Z 981 \\ \partial \mathrm{y} \\ \mathrm{GL} \end{gathered}$	$\begin{gathered} \hline 58 \& 81 \\ M+L \end{gathered}$	$\begin{gathered} 6466081 \\ \mathrm{ED} \\ \mathrm{EL} \end{gathered}$	$\begin{gathered} 6+8 \mathrm{ILI} \\ \mathrm{H} \\ \mathrm{zL} \end{gathered}$	$\begin{gathered} 55068 \varepsilon 1 \\ 87 \\ \hline \quad 29 \end{gathered}$		
	$\begin{array}{cc} \text { sto } \\ & 1 \\ & \\ \hline \end{array}$	$\begin{gathered} 09 \angle \mathrm{LZI} \\ { }_{\mathrm{O}}{ }_{\mathrm{ZS}} \end{gathered}$	$\begin{gathered} \hline \angle 1.121 \\ \mathrm{qS} \\ \mathrm{LG} \end{gathered}$	$\begin{gathered} \begin{array}{c} 01 \angle 8 I I \\ \text { US }_{0 S} \end{array} \end{gathered}$	$\begin{gathered} 28+\mathrm{tII} \\ \mathrm{ul} \\ 6 \mathrm{ta} \end{gathered}$	$\mathrm{PO}_{8}^{\mathrm{It}+\mathrm{CII}}$	z898 Lor万 \forall Lt	$\begin{gathered} 2 t \cdot 901 \\ \text { Pd } \\ 90 \end{gathered}$	s 506 zol पप्」 st	$\begin{gathered} \text { L0' } 101 \\ \text { ny } \\ t o t \end{gathered}$	$\begin{aligned} & (86) \\ & \stackrel{\perp}{\varepsilon} \\ & \hline \end{aligned}$	$\begin{gathered} \hline+6: 96 \\ \text { OW } \\ \quad \mathrm{Zt} \\ \hline \end{gathered}$	$\begin{gathered} 5906 \mathrm{Zb} \\ \mathrm{qN} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} +2 z^{\prime} 16 \\ 1 Z^{0} \\ 0 t \end{gathered}$	$\begin{gathered} 650688 \\ \lambda_{6 \varepsilon} \end{gathered}$	$\begin{gathered} 29 \angle 8 \\ 1 S^{8 \varepsilon} \\ \hline \end{gathered}$	829t＇s8 qप्d Lع
$\begin{gathered} 08 \varepsilon 8 \\ 1 \gamma_{1} \\ 9 \varepsilon \end{gathered}$	$\begin{gathered} 50666 \\ 19 \\ 98 \end{gathered}$	$\begin{gathered} 968 L \\ \partial S_{t \varepsilon} \end{gathered}$	$\begin{array}{\|c\|} \hline 9766+L \\ s \forall \\ \varepsilon \varepsilon \\ \hline \end{array}$	$\begin{aligned} & 197 L \\ & \text { әפ } \\ & \text { z६ } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon L \cdot 69 \\ 89 \\ 1 \varepsilon \end{gathered}$	$\begin{gathered} 6 \cdot: 59 \\ \mathrm{uZ}^{2} \\ 0 \varepsilon \end{gathered}$	$\begin{gathered} 9+\varsigma \varepsilon 9 \\ \mathrm{n} \mathrm{~S}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6985 \\ & !\mathrm{N}_{8} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \varepsilon \varepsilon 685 \\ 0 O^{2} \\ L Z \end{gathered}$	$\begin{gathered} \text { L+8'ss } \\ \partial \mathrm{J} \\ 9 z \end{gathered}$	$0886+5$ uW sz	$\begin{gathered} 1966 \text { is } \\ 10 \\ \text { tz } \end{gathered}$	$\begin{gathered} \text { Sit } 60 s \\ \Lambda_{\varepsilon \tau} \\ \hline \end{gathered}$	$\begin{gathered} 88 \angle t \\ !\perp \\ \hline \quad 2 z \\ \hline \end{gathered}$		$\begin{aligned} & 8 \angle 0^{\circ 0 t} \\ & \text { ejo } \\ & 0 \end{aligned}$	$\begin{gathered} 8860 \cdot 6 \varepsilon \\ y_{1} \\ 61 \end{gathered}$
$\begin{gathered} 8+66 \varepsilon \\ 1 \forall^{81} \end{gathered}$	$\begin{gathered} \angle z s t^{\angle S} S \varepsilon \\ 1 O_{\angle 1} \end{gathered}$	$\begin{gathered} 990 \cdot \mathrm{Z} \mathrm{\varepsilon} \\ \mathrm{~S}_{91} \end{gathered}$	$\left.\begin{array}{\|c\|} 8 \varepsilon L G^{\circ} 0 \varepsilon \\ d_{\text {Gl }} \end{array} \right\rvert\,$			$\begin{aligned} & 2! \\ & \mathrm{gl} \end{aligned}$	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\stackrel{01}{\circ}$	88	8	Q^{L}	99	g	gঃt	$\begin{gathered} \varepsilon \varepsilon \\ \varepsilon \varepsilon \end{gathered}$		$\begin{gathered} 8686 \mathrm{zz} \\ \text { EN } \end{gathered}$
$\begin{gathered} \text { L6LIOR } \\ \partial \mathrm{N}_{01} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86681 \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { +666'S1 } \\ \mathrm{O}_{8} \end{gathered}$	$\stackrel{\angle 900}{ } \mathrm{~N}_{2}+1$	$\begin{gathered} 110 \mathrm{zl} \\ \mathrm{O}_{9} \\ \hline \end{gathered}$	$\begin{gathered} 11800 \\ \mathrm{~g}^{\prime} \\ \hline \end{gathered}$											$\begin{gathered} 2 \pi 10 \% \\ \partial g_{\mathrm{t}}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1+69 \\ & ! \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 9zoo't } \\ & \text { } \begin{array}{c} \text { OH } \\ \\ \hline \end{array} \\ & \hline \end{aligned}$	$\stackrel{\angle 1}{\forall L}$	$\begin{aligned} & 9! \\ & \forall 9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{9}{\text { G }} \\ & \forall G \end{aligned}$	$\stackrel{\rightharpoonup!}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{\varepsilon}{\forall 1} \\ & \forall \varepsilon \end{aligned}$											$\stackrel{z}{\forall}$	$\mathrm{Cl}_{6}^{6200^{\prime}}$
$\begin{aligned} & \hline 8! \\ & \forall 8 \end{aligned}$							SұU	UЈ	В	$1{ }^{\circ}$	Ә［	L	P00	$\mathrm{O}^{\text {d }}$			$\stackrel{1}{\forall 1}$

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Msci 180724

18:08, general, multiple choice, >1 min, fixed. 001
Which of the following mixtures will be a buffer when dissolved in a liter of water?

1. $0.1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ and 0.3 mol HI
2. 0.3 mol NaCl and 0.3 mol HCl
3. 0.4 mol NH 3 and 0.4 mol HCl
4. 0.2 mol HBr and 0.1 mol NaOH

5. 0.2 mol HF and 0.1 mol NaOH correct

Explanation:

Eliminate answers that are obviously incorrect. The choice with " 0.2 mol HBr " and " 0.1 $\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2} "$ are strong acids and strong bases respectively; therefore, NOT buffers. The choice with " 0.3 mol NaCl " is a combination of spectator ions and a strong acid; this does not form a buffer. Remaining for calculation are choices with " $0.4 \mathrm{~mol} \mathrm{NH}_{3}$ " and " 0.2 mol HF ". Now perform the neutralizaton calculations on the remaining possibilities:
Choice with $0.4 \mathrm{~mol} \mathrm{NH}_{3}$

Initial	0.4	0.4	0
Change	-0.4	-0.4	0.4
Final	0	0	0.4

Choice with 0.2 mol HF

$\mathrm{HF}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}$				
Initial	0.2	0.1	0	-
Change	-0.1	-0.1	0.1	-
Final	0.1	0	0.1	-

The choice with 0.2 mol HF has both weak acid and weak conjugate base left over, so it is the buffer solution.

ChemPrin3e T10 14

18:99, basic, multiple choice, $<1 \mathrm{~min}$, fixed.
002
Which of the following is the STRONGEST base?

1. methylamine ($\mathrm{p} K_{\mathrm{b}}=3.44$) correct
2. morphine ($\mathrm{p} K_{\mathrm{b}}=5.79$)
3. urea $\left(\mathrm{p} K_{\mathrm{b}}=13.90\right)$
4. ammonia ($\mathrm{p} K_{\mathrm{b}}=4.75$)
5. pyridine $\left(\mathrm{p} K_{\mathrm{b}}=8.75\right)$

Explanation:

ChemPrin3e T10 39

18:99, basic, multiple choice, $<1 \mathrm{~min}$, fixed. 003
Estimate the pH of $10^{-7} \mathrm{M} \mathrm{HClO}_{4}(\mathrm{aq})$.

1. 6.8 correct
2. 8.0
3. 1.0
4. 5.0
5. 7.0

Explanation:

Msci 180882

18:08, general, multiple choice, $>1 \mathrm{~min}$, fixed. 004
A solution is initially 0.0100 M in HClO and 0.0300 M in NaClO .

What is the pH after the addition of 0.0030 mol of solid NaOH to 1.00 L of this solution? Assume no volume change.

1. 5.34
2. 5.33
3. 8.02

4. 8.13 correct

5. 9.06

Explanation:

$[\mathrm{HClO}]=0.01 \mathrm{M}$

$$
\left[\mathrm{ClO}^{-}\right]=0.03 \mathrm{M}
$$

$K_{\mathrm{a}}=3.5 \times 10^{-8}$
$\mathrm{NaOH}=0.0030 \mathrm{~mol}$

	HClO	$+\mathrm{NaOH} \rightarrow$	$\mathrm{Na}^{+}+$$\mathrm{ClO}^{-}$ $+\mathrm{H}_{2} \mathrm{O}$	
ini	0.01	0.003	0.03	0.03
Δ	-0.003	-0.003	0.003	0.003
fin	0.007	0	0.033	0.033

Na^{+}is a spectator ion. HClO and OCl^{-} produce a buffer system.

$$
\begin{aligned}
\mathrm{pH} & =\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}\right) \\
& =-\log \left(3.5 \times 10^{-8}\right)+\log \left(\frac{0.033}{0.007}\right) \\
& =8.12935
\end{aligned}
$$

ChemPrin3e T10 52

18:99, basic, multiple choice, $<1 \mathrm{~min}$, fixed.

005

Which equation represents $K_{\mathrm{a} 2}$ for phosphoric acid?

$$
\begin{aligned}
& \text { 1. } \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \\
& \qquad \mathrm{PO}_{4}^{3-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

2. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \text { correct }
$$

$$
\text { 3. } \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\underset{\mathrm{HPO}_{4}^{2-}(\mathrm{aq})}{2 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow}+2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

4. $\mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\text { 5. } \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\underset{\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow}{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Explanation:

Msci 190751

18:10, general, multiple choice, >1 min, fixed.

What is the $\mathrm{p} K_{\mathrm{a}}$ of the acid titrated in this pH curve?

1. 4.7
2. 5.6 correct
3. 5.9
4. 6.8
5. 9.0

Explanation:

Msci 190618

18:10, general, multiple choice, $>1 \mathrm{~min}$, fixed. 007
Calculate the pH of the solution resulting from the addition of 30.0 mL of 0.200 M HClO_{4} to 60.0 mL of 0.150 M NaOH .

1. 12.52 correct

2. 11.88
3. 7.00
4. 1.48
5. 13.06

Explanation:

Here it's important to find out which of these two species $\left(\mathrm{HClO}_{4}\right.$ and NaOH$)$ is in excess. The one that is in excess will determine
the pH of this solution. From the formulas of the two compounds, you can expect that they will react in a one-to-one fashion.

So our first order of business will be to determine how many moles of each compound we have.
For HClO_{4}, we have

$$
30.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\begin{array}{l}
\frac{0.200 \mathrm{~mol}}{1 \mathrm{~L}} \\
=0.006 \mathrm{~mol} \mathrm{HClO}_{4}
\end{array}\right.
$$

Likewise, for NaOH , we have

$$
60.0 \mathrm{~mL}\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\begin{array}{l}
\left.\frac{0.150 \mathrm{~mol}}{1 \mathrm{~L}}\right) \\
=0.009 \mathrm{~mol} \mathrm{NaOH}
\end{array}\right.
$$

So when HClO_{4} and NaOH react, all of the HClO_{4} will be consumed (it's the limiting reagent) and

$$
0.009 \mathrm{~mol}-0.006 \mathrm{~mol}=0.003 \mathrm{~mol}
$$

will remain. This 0.00300 mol excess of NaOH will determine the pH of this solution. The solution now is

$$
30.0 \mathrm{~mL}+60.0 \mathrm{~mL}=90 \mathrm{~mL}
$$

and, since NaOH is a strong base (i.e., it's completely dissociated), it contains 0.003 mol $\mathrm{OH}^{-} .\left[\mathrm{OH}^{-}\right]$is then

$$
\left[\mathrm{OH}^{-}\right]=\frac{0.003 \mathrm{~mol}}{0.09 \mathrm{~L}}=0.0333333 \mathrm{M}
$$

which means that the pOH of this solution is

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right]=-\log (0.0333333) \\
& =1.47712
\end{aligned}
$$

However, we wanted pH . We can use the equation that relates pH to pOH to get pH

$$
\begin{aligned}
\mathrm{pH}+\mathrm{pOH} & =14 \\
\mathrm{pH}+1.47712 & =14 \\
\mathrm{pH} & =12.5229
\end{aligned}
$$

Msci 190619

18:10, general, multiple choice, >1 min, fixed. 008
What would be the pH if 0.030 moles of solid NaOH were added to 200 mL of 0.200 M acetic acid solution? Assume the volume of the solution does not change when the solid is
added. The ionization constant of acetic acid is 1.8×10^{-5}.

1. $\mathrm{pH}=4.27$
2. $\mathrm{pH}=4.87$
3. $\mathrm{pH}=5.22$ correct
4. $\mathrm{pH}=5.35$
5. None of these

Explanation:

$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.2 \mathrm{M} \quad V_{\mathrm{CH}_{3} \mathrm{COOH}}=200 \mathrm{~mL}$ $K_{\mathrm{a}}=1.8 \times 10^{-5}$

Initial condition (ini):
$n_{\mathrm{NaOH}}=0.03 \mathrm{~mol}$
$n_{\mathrm{CH}_{3} \mathrm{COOH}}=0.200 \times 0.200=0.04 \mathrm{~mol}$

$\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$			
		$+\mathrm{H}_{2} \mathrm{O}$	
0.03	0.04	0	0
-0.03	-0.03	0.03	0.03
0	0.01	0.03	0.03

Na^{+}is a spectator ion. Both $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-}$are present, so the solution is a buffer.

$$
\begin{aligned}
\mathrm{pH}= & \mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right) \\
= & -\log \left(1.8 \times 10^{-5}\right) \\
& +\log \left(\frac{0.03 \mathrm{~mol} / 0.200 \mathrm{~L}}{0.01 \mathrm{~mol} / 0.200 \mathrm{~L}}\right) \\
= & 5.22185
\end{aligned}
$$

