$\begin{aligned} & 17 \\ & 801 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ON} \\ \mathrm{ZOL} \\ \hline \end{gathered}$	PW	$\begin{gathered} w_{-1} \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{\exists} \\ 66 \\ \hline \end{gathered}$	${ }^{\circ 0_{86}}$	$\begin{array}{r} \text { Y马 }_{26} \\ \hline \end{array}$	$\begin{array}{r} \text { wo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ \mathrm{sb} \\ \hline \end{gathered}$	$d_{t 6}$	$\begin{gathered} (\angle \Sigma z) \\ \mathrm{d} \\ \mathrm{E} \end{gathered}$	${ }_{26}^{18 \varepsilon z}$	$\begin{gathered} 1 \varepsilon z \\ d_{16} \end{gathered}$	${ }_{\stackrel{1}{+}}$
L96t	to	$2+56$	92	E066t91	0¢ 291	\＆ 56685	STLLSI	${ }_{596 \text { ISI }}$	$9{ }^{\text {cosi }}$	（StI）	ャでゅt1	06	sı0tı
n7	9人	m_{\perp}	壮	OH	人0	$\mathrm{q} \perp$	pפ	$\mathrm{n} \exists$	us	ud	PN	$1{ }^{1}$	əО
12	02	69	89	29	99	s9	†9	$\varepsilon 9$	29	19	09	6 S	89

									$\begin{gathered} (992) \\ +W \\ 601 \end{gathered}$	$\begin{array}{c\|} \hline \text { (592) } \\ \mathrm{SH} \\ 801 \end{array}$	$\begin{aligned} & \text { (292) } \\ & 48 \end{aligned}$ $\angle 01$	$\begin{array}{c\|} \hline(\xi 9 z) \\ \mathrm{DS} \\ 90 \mathrm{l} \end{array}$	$\begin{gathered} (z 92) \\ 90 \\ \text { 901 } \end{gathered}$	$\begin{gathered} (192) \\ f+4 \\ +01 \end{gathered}$	$\begin{gathered} (L z z) \\ \partial \forall \\ 68 \end{gathered}$	$\begin{aligned} & (9 z z) \\ & \text { ey } \\ & 88 \\ & \hline \end{aligned}$	
$\begin{gathered} (z z \tau) \\ u y_{98} \end{gathered}$	$\stackrel{\text {（012）}}{1}+$	$\begin{aligned} & (602) \\ & \mathrm{O}_{\mathrm{d}} \\ & \mathrm{t} 8 \end{aligned}$	$\begin{array}{\|r\|} \hline 008680 \tau \\ !9 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \tau \angle L O Z \\ & \mathrm{qd} \\ & \text { z } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon 8 \varepsilon+00 \\ \perp_{18} \\ \hline 18 \end{gathered}$	$\begin{gathered} \stackrel{65}{6} 00 \mathrm{z}_{\mathrm{D}}^{\mathrm{H}} \\ 08 \end{gathered}$	s996961 n \forall 62	$\begin{gathered} 80^{\circ} \mathrm{s} 6 \mathrm{l} \\ \mathrm{td} \\ 82 \end{gathered}$	$\begin{gathered} 2 \pi z 61 \\ 11 \\ \\ \hline 12 \end{gathered}$	$\begin{gathered} \mathrm{z}^{2061} \\ \mathrm{SO}_{92} \end{gathered}$	$\begin{gathered} \angle 0 Z 981 \\ \partial \mathrm{y} \\ \mathrm{GL} \end{gathered}$	$\begin{gathered} \hline 58 \& 81 \\ M+L \end{gathered}$	$\begin{gathered} 6466081 \\ \mathrm{ED} \\ \mathrm{EL} \end{gathered}$	$\begin{gathered} 6+8 \mathrm{ILI} \\ \mathrm{H} \\ \mathrm{zL} \end{gathered}$	$\begin{gathered} 55068 \varepsilon 1 \\ 87 \\ \hline \quad 29 \end{gathered}$		
	$\begin{array}{cc} \text { sto } \\ & 1 \\ & \\ \hline \end{array}$	$\begin{gathered} 09 \angle \mathrm{LZI} \\ { }_{\mathrm{O}}{ }_{\mathrm{ZS}} \end{gathered}$	$\begin{gathered} \hline \angle 1.121 \\ \mathrm{qS} \\ \mathrm{LG} \end{gathered}$	$\begin{gathered} \begin{array}{c} 01 \angle 8 I I \\ \text { US }_{0 S} \end{array} \end{gathered}$	$\begin{gathered} 28+\mathrm{tII} \\ \mathrm{ul} \\ 6 \mathrm{ta} \end{gathered}$	$\mathrm{PO}_{8}^{\mathrm{It}+\mathrm{CII}}$	z898 Lor万 \forall Lt	$\begin{gathered} 2 t \cdot 901 \\ \text { Pd } \\ 90 \end{gathered}$	s 506 zol पप्」 st	$\begin{gathered} \text { L0' } 101 \\ \text { ny } \\ t o t \end{gathered}$	$\begin{aligned} & (86) \\ & \stackrel{\perp}{\varepsilon} \\ & \hline \end{aligned}$	$\begin{gathered} \hline+6: 96 \\ \text { OW } \\ \quad \mathrm{Zt} \\ \hline \end{gathered}$	$\begin{gathered} 5906 \mathrm{Zb} \\ \mathrm{qN} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} +2 z^{\prime} 16 \\ 1 Z^{0} \\ 0 t \end{gathered}$	$\begin{gathered} 650688 \\ \lambda_{6 \varepsilon} \end{gathered}$	$\begin{gathered} 29 \angle 8 \\ 1 S^{8 \varepsilon} \\ \hline \end{gathered}$	829t＇s8 qप्d Lع
$\begin{gathered} 08 \varepsilon 8 \\ 1 \gamma_{1} \\ 9 \varepsilon \end{gathered}$	$\begin{gathered} 50666 \\ 19 \\ 98 \end{gathered}$	$\begin{gathered} 968 L \\ \partial S_{t \varepsilon} \end{gathered}$	$\begin{array}{\|c\|} \hline 9766+L \\ s \forall \\ \varepsilon \varepsilon \\ \hline \end{array}$	$\begin{aligned} & 197 L \\ & \text { әפ } \\ & \text { z६ } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon L \cdot 69 \\ 89 \\ 1 \varepsilon \end{gathered}$	$\begin{gathered} 6 \cdot: 59 \\ \mathrm{uZ}^{2} \\ 0 \varepsilon \end{gathered}$	$\begin{gathered} 9+\zeta \varepsilon 9 \\ \mathrm{n} \mathrm{~S}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6985 \\ & !\mathrm{N}_{8} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \varepsilon \varepsilon 685 \\ 0 O^{2} \\ L Z \end{gathered}$	$\begin{gathered} \text { L+8'ss } \\ \partial \mathrm{J} \\ 9 z \end{gathered}$	$0886+5$ uW sz	$\begin{gathered} 1966 \text { is } \\ 10 \\ \text { tz } \end{gathered}$	$\begin{gathered} \text { Sit } 60 s \\ \Lambda_{\varepsilon \tau} \\ \hline \end{gathered}$	$\begin{gathered} 88 \angle t \\ !\perp \\ \hline \quad 2 z \\ \hline \end{gathered}$		$\begin{aligned} & 8 \angle 0^{\circ 0 t} \\ & \text { ejo } \\ & 0 \end{aligned}$	$\begin{gathered} 8860 \cdot 6 \varepsilon \\ y_{1} \\ 61 \end{gathered}$
$\begin{gathered} 8+66 \varepsilon \\ 1 \forall^{81} \end{gathered}$	$\begin{gathered} \angle z s t^{\angle S} \leq \varepsilon \\ 1 O_{\angle 1} \end{gathered}$	$\begin{gathered} 990 \cdot \mathrm{Z} \mathrm{\varepsilon} \\ \mathrm{~S}_{91} \end{gathered}$	$\left.\begin{array}{\|c\|} 8 \varepsilon L G^{\circ} 0 \varepsilon \\ d_{\text {Gl }} \end{array} \right\rvert\,$			$\begin{aligned} & 2! \\ & \mathrm{gl} \end{aligned}$	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\stackrel{01}{\circ}$	88	8	Q^{L}	99	g	gঃt	$\begin{gathered} \varepsilon \varepsilon \\ \varepsilon \varepsilon \end{gathered}$		$\begin{gathered} 8686 \mathrm{zz} \\ \text { EN } \end{gathered}$
$\begin{gathered} \text { L6LIOR } \\ \partial \mathrm{N}_{01} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86681 \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { +666'S1 } \\ \mathrm{O}_{8} \end{gathered}$	$\stackrel{\angle 900}{ } \mathrm{~N}_{2}+1$	$\begin{gathered} 110 \mathrm{zl} \\ \mathrm{O}_{9} \\ \hline \end{gathered}$	$\begin{gathered} 11800 \\ \mathrm{~g}^{\prime} \\ \hline \end{gathered}$											$\begin{gathered} 2 \pi 10 \% \\ \partial g_{\mathrm{t}}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1+69 \\ & ! \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 9zoo't } \\ & \text { } \begin{array}{c} \text { OH } \\ \\ \hline \end{array} \\ & \hline \end{aligned}$	$\stackrel{\angle 1}{\forall L}$	$\begin{aligned} & 9! \\ & \forall 9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{9}{\text { G }} \\ & \forall G \end{aligned}$	$\stackrel{\rightharpoonup!}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{\varepsilon}{\forall 1} \\ & \forall \varepsilon \end{aligned}$											$\stackrel{z}{\forall}$	$\mathrm{Cl}_{6}^{6200^{\prime}}$
$\begin{aligned} & \hline 8! \\ & \forall 8 \end{aligned}$							SұU	UЈ	В	$1{ }^{\circ}$	Ә［	L	P00	$\mathrm{O}^{\text {d }}$			$\stackrel{1}{\forall 1}$

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Msci 180340

18:01, general, multiple choice, >1 min, fixed. 001
What is $\left[\mathrm{OH}^{-}\right]$in a 0.0050 M HCl solution?

1. $5.0 \times 10^{-3} \mathrm{M}$
2. 1.0 M
3. $1.0 \times 10^{-7} \mathrm{M}$
4. $6.6 \times 10^{-5} \mathrm{M}$
5. $2.0 \times 10^{-12} \mathrm{M}$ correct

Explanation:

$\left[\mathrm{OH}^{-}\right]=0.0050 \mathrm{M}$
Since HCl is a strong acid, it completely dissociates and H^{+}is 0.0050 M .

$$
\begin{aligned}
& \mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
K_{\mathrm{w}}= & {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} } \\
{\left[\mathrm{OH}^{-}\right]=} & \frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}\right]} \\
= & \frac{1 \times 10^{-14}}{0.0050}=2 \times 10^{-12} \mathrm{M}
\end{aligned}
$$

Msci 180401

18:01, general, multiple choice, >1 min, fixed. 002
Hydroxylamine is a weak molecular base with $K_{\mathrm{b}}=6.6 \times 10^{-9}$.

What is the pH of a 0.0500 M solution of hydroxylamine?

1. $\mathrm{pH}=3.63$
2. $\mathrm{pH}=4.74$
3. $\mathrm{pH}=7.12$
4. $\mathrm{pH}=9.26$ correct
5. $\mathrm{pH}=10.37$
6. $\mathrm{pH}=9.48$
7. $\mathrm{pH}=8.93$

Explanation:

Hydroxylamine is a weak base, so use the equation to calculate weak base $\left[\mathrm{OH}^{-}\right]$concentration (note that this is the approximate equation. Why? Because K_{b} is very small and the concentration is reasonable) :

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{K_{\mathrm{b}} C_{\mathrm{b}}} \\
& =\sqrt{\left(6.6 \times 10^{-9}\right)(0.0500)} \\
& =1.82 \times 10^{-5}
\end{aligned}
$$

After finding $\left[\mathrm{OH}^{-}\right.$, you can find pH using either method below:
A)

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left(1.82 \times 10^{-5}\right)=4.74 \\
\mathrm{pH} & =14-4.74=9.26
\end{aligned}
$$

or B)

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} \\
& =\frac{1.0 \times 10^{-14}}{1.82 \times 10^{-5}}=5.52 \times 10^{-10} \\
\mathrm{pH} & =-\log \left(5.52 \times 10^{-10}\right)=9.26
\end{aligned}
$$

Acid Strength 10 36b

18:01, basic, multiple choice, >1 min, wording-variable.

003
Which acid is weaker?

1. HBrO correct

2. HBrO_{3}

3. They have the same strength.

Explanation:

HBrO_{3} is stronger; there are more O atoms attached to the central atom in HBrO_{3}, making the $\mathrm{H}-\mathrm{O}$ bond in HBrO_{3} more polar (and thus more easily broken) than in HBrO .

Msci 100318
11:04, general, multiple choice, >1 min, fixed.

Which of the following would be expected to act as a Lewis acid?

1. OH^{-}
2. NH_{3}
3. $\mathrm{H}_{3} \mathrm{O}^{+}$
4. NH_{4}^{+}

5. BF_{3} correct

Explanation:

A Lewis acid will have an electron poor region and be able to accept an electron pair. In BF_{3} the boron atom is sharing only 6 electrons and therefore would be able to accept an electron pair.

ChemPrin3e T10 05

18:99, basic, multiple choice, $<1 \mathrm{~min}$, fixed.

005

What is the conjugate base of ammonia?

1. $\mathrm{NH}_{2} \mathrm{OH}$

2. NH_{2}^{-}correct
3. NH_{4}^{+}
4. NH_{3}

5. OH^{-}

Explanation:

Msci 180716
18:08, general, multiple choice, >1 min, fixed. 006
All components are present in 0.10 M concentrations.
I) HCN and NaCN
II) NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$
III) HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
IV) HClO_{3} and NaClO_{3}

Which will give buffer solutions?
2. I and II only correct
3. II, III and IV only
4. III and IV only
5. I and III only

Explanation:

Buffers are formed in one of two ways, by combining a weak acid and its conjugate base or by combining a weak base and its conjugate acid.
HNO_{3} and HClO_{3} are both strong acids and cannot be used to make effective buffer solutions.

HCN is a weak acid and NaCN is the salt of its conjugate base, $\mathrm{CN}^{-} . \mathrm{NH}_{3}$ is a weak base and $\mathrm{NH}_{4} \mathrm{Cl}$ is the salt of its conjugate acid, NH_{4}^{+}. Therefore 1 and 2 can be used to make effective buffer solutions.

Msci 460014

19:01, general, multiple choice, $>1 \mathrm{~min}$, fixed. 007
What is the molar solubility of CaF_{2} ? $\left(K_{\mathrm{sp}}=\right.$ 3.9×10^{-11}.)

1. 6.2×10^{-6}
2. 3.4×10^{-4}
3. 2.1×10^{-4} correct
4. 3.9×10^{-11}
5. 4.4×10^{-6}

Explanation:

$$
\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}
$$

$$
\begin{aligned}
K_{\mathrm{sp}} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
3.9 \times 10^{-11} & =(x)(2 x)^{2} \\
& =4 x^{3} \\
x & =2.1 \times 10^{-4}
\end{aligned}
$$

1. I, III and IV only

18:08, basic, multiple choice, $<1 \mathrm{~min}$, fixed. 008
What is the pH of an aqueous solution that is $0.10 \mathrm{M} \mathrm{HCOOH}\left(K_{\mathrm{a}}=1.8 \times 10^{-4}\right)$ and 0.10 M NaHCO 2 ?

1. 10.26

2. 3.74 correct

3. 5.74
4. 2.38
5. 5.62

Explanation:

