	œ	15		<u>с</u> і	8		ω	з		<u>,</u>	2		÷			ω			-	
Fr		132.9054	Cs	5		Rb			ㅈ			Na			⊑.		1.0079	I		- 7
(226)			Ba			ð	38	40.078	Ca			Mg	12	9.0122	Be	4	N	2A		
(227)						~		-												
(261)	104	178.49	Ηŕ	72	91.224	Ŋ	40	47.88	∃	22	4	4B								Peri
(262)	105	180.9479	Ta	73	92.9064	٨p	41	50.9415	<	23	5	5B								Periodic Table of the Elements
(263)									ç			6B								
Bh		-				7			Mn	25	7	7B								ble
(265)	108	190.2	So	76	101.07	Ru	44	55.847	Fe	26	8	7								of th
(266)	109					Rh			С 0			– 88 –								e E
		195.08	P	82					Z											eme
			Au		107.8682	Ag	47	63.546	ĉ	29	11	1B								ents
		200.59	Hg		112.411	g	48	65.39	Zn	30	12	2B								
		204.3833	⊒			Ч	49	69.723	Ga	31	26.9815	Þ	13	10.811	ω	ŋ	13	ЗA		
		207.2	Рb	82	118.710				Ge	32	28.0855	<u>ง</u>	14	12.011	ဂ		14	4A		
		208.9804	<u>B</u>	83	121.75	Sр	51	74.9216	As	33	30.9738	ס	15	14.0067	z	7	15	5A		
			Po			Te			Se	34	32.066	ഗ	16	15.9994	z o	8	16	6A		
		(210)	At	85	126.9045	_	53	79.904	Βŗ	35	35.4527	<u>0</u>	17	18.9984	п	9	17			
			Rn	86	131.39	Xe	54	83.80	Ę	36	39.948	Ar	18	20.1797	Ne	10	4.0026	He	2	-18 8A

232.0381	Τh	90	140.115	Ce	58
231.0359	Pa	16	140.9076	Pr	59
238.0289	C	92	144.24	Nd	60
(237)	Np	93	(145)	Pm	61
(244)	Pu	94	150.36	Sm	62
	Am	26	151.965	П с	63
	Cm		157.25	Gd	64
	Bk		158.9253	ТЬ	65
(251)	Ç	86	162.50	Dy	66
(252)	Пs	66	164.9303	Но	67
(257)	Fm	100	167.26	Щ	88
(258)	Md	101	168.9342	Tm	69
(259)	No	102	173.04	ЧY	70
(260)	Ļ	103	174.967	Ľ	71

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

Msci 18 0340

18:01, general, multiple choice, $> 1 \min$, fixed. 001

What is $[OH^-]$ in a 0.0050 M HCl solution?

1.
$$5.0 \times 10^{-3}$$
 M

2. 1.0 M

3.
$$1.0 \times 10^{-7}$$
 M

4. 6.6×10^{-5} M

5. 2.0×10^{-12} M correct

Explanation:

 $[OH^{-}] = 0.0050 \text{ M}$

Since HCl is a strong acid, it completely dissociates and H^+ is 0.0050 M.

$$\mathrm{HCl} \rightleftharpoons \mathrm{H}^+ + \mathrm{Cl}^-$$

$$K_{\rm w} = [{\rm H}^+][{\rm OH}^-] = 1 \times 10^{-14}$$
$$[{\rm OH}^-] = \frac{K_{\rm w}}{[{\rm H}^+]}$$
$$= \frac{1 \times 10^{-14}}{0.0050} = 2 \times 10^{-12} {\rm M}$$

Msci 18 0401

18:01, general, multiple choice, $> 1 \min$, fixed. 002

Hydroxylamine is a weak molecular base with $K_{\rm b} = 6.6 \times 10^{-9}$.

What is the pH of a 0.0500 M solution of hydroxylamine?

- **1.** pH = 3.63
- **2.** pH = 4.74
- **3.** pH = 7.12
- **4.** pH = 9.26 correct

pH = 10.37
 pH = 9.48

Explanation:

Hydroxylamine is a weak base, so use the equation to calculate weak base $[OH^-]$ concentration (note that this is the approximate equation. Why? Because K_b is very small and the concentration is reasonable) :

OH⁻] =
$$\sqrt{K_{\rm b} C_{\rm b}}$$

= $\sqrt{(6.6 \times 10^{-9}) (0.0500)}$
= 1.82×10^{-5}

After finding [OH⁻], you can find pH using either method below:

A)

$$pOH = -\log(1.82 \times 10^{-5}) = 4.74$$

 $pH = 14 - 4.74 = 9.26$
or B)
 $K_{\rm W}$

$$[\mathrm{H}^+] = \frac{\mathrm{A}_{\mathrm{W}}}{[\mathrm{OH}^-]}$$
$$= \frac{1.0 \times 10^{-14}}{1.82 \times 10^{-5}} = 5.52 \times 10^{-10}$$
$$\mathrm{pH} = -\log\left(5.52 \times 10^{-10}\right) = 9.26$$

Acid Strength 10 36b

18:01, basic, multiple choice, > 1 min, wording-variable.

003

Which acid is weaker?

1. HBrO correct

2. HBrO₃

3. They have the same strength.

Explanation:

HBrO₃ is stronger; there are more O atoms attached to the central atom in HBrO₃, making the H — O bond in HBrO₃ more polar (and thus more easily broken) than in HBrO.

 $\begin{array}{c} {\bf Msci \ 10 \ 0318} \\ 11:04, \, {\rm general}, \, {\rm multiple \ choice}, > 1 \, {\rm min}, \, {\rm fixed}. \\ {\bf 004} \end{array}$

Which of the following would be expected to act as a Lewis acid?

- **1.** OH⁻
- **2.** NH₃
- **3.** H₃O⁺
- **4.** NH_4^+
- **5.** BF_3 correct

Explanation:

A Lewis acid will have an electron poor region and be able to accept an electron pair. In BF_3 the boron atom is sharing only 6 electrons and therefore would be able to accept an electron pair.

ChemPrin3e T10 05

18:99, basic, multiple choice, < 1 min, fixed.

005

What is the conjugate base of ammonia?

1. NH_2OH

2. NH_2^- correct

3. NH₄⁺

4. NH₃

5. OH^-

Explanation:

Msci 18 0716

18:08, general, multiple choice, >1 min, fixed. \$006\$

All components are present in 0.10 M concentrations.

- I) HCN and NaCN
- II) NH_3 and NH_4Cl
- III) HNO₃ and NH₄NO₃
- IV) $HClO_3$ and $NaClO_3$

Which will give buffer solutions?

1. I, III and IV only

2. I and II only **correct**

 ${\bf 3.}$ II, III and IV only

4. III and IV only

5. I and III only

Explanation:

Buffers are formed in one of two ways, by combining a weak acid and its conjugate base or by combining a weak base and its conjugate acid.

 HNO_3 and $HClO_3$ are both strong acids and cannot be used to make effective buffer solutions.

HCN is a weak acid and NaCN is the salt of its conjugate base, CN^- . NH₃ is a weak base and NH₄Cl is the salt of its conjugate acid, NH₄⁺. Therefore 1 and 2 can be used to make effective buffer solutions.

$\mathbf{Msci} \ \mathbf{46} \ \mathbf{0014}$

19:01, general, multiple choice, $> 1 \min$, fixed. 007

What is the molar solubility of CaF₂? ($K_{\rm sp} = 3.9 \times 10^{-11}$.)

1. 6.2×10^{-6} **2.** 3.4×10^{-4} **3.** 2.1×10^{-4} correct **4.** 3.9×10^{-11}

5. 4.4×10^{-6}

Explanation:

$$CaF_2 \rightleftharpoons Ca^{2+} + 2F^-$$

$$K_{\rm sp} = [{\rm Ca}^{2+}] \, [{\rm F}^{-}]^2$$

3.9 × 10⁻¹¹ = (x) (2x)²
= 4 x³
x = 2.1 × 10⁻⁴

18:08, basic, multiple choice, < 1 min, fixed. **008** What is the pH of an aqueous solution that is 0.10 M HCOOH ($K_a = 1.8 \times 10^{-4}$) and 0.10 M NaHCO₂?

1. 10.26

 $\textbf{2.}\ 3.74\ \textbf{correct}$

3. 5.74

4. 2.38

5. 5.62

Explanation: