$\begin{aligned} & 17 \\ & 801 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{ON} \\ \mathrm{ZOL} \\ \hline \end{gathered}$	PW	$\begin{gathered} w_{-1} \\ 001 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{\exists} \\ 66 \\ \hline \end{gathered}$	${ }^{\circ 0_{86}}$	$\begin{array}{r} \text { Y马 }_{26} \\ \hline \end{array}$	$\begin{array}{r} \text { wo } \\ \hline \end{array}$	$\begin{gathered} \mathrm{w} \\ \mathrm{sb} \\ \hline \end{gathered}$	$d_{t 6}$	$\begin{gathered} (\angle \Sigma z) \\ \mathrm{d} \\ \mathrm{E} \end{gathered}$	${ }_{26}^{18 \varepsilon z}$	$\begin{gathered} 1 \varepsilon z \\ d_{16} \end{gathered}$	${ }_{\stackrel{1}{+}}$
L96t	to	$2+56$	92	E066t91	0¢ 291	\＆ 56685	STLLSI	${ }_{596 \text { ISI }}$	$9{ }^{\text {cosi }}$	（StI）	ャでゅt1	06	sı0tı
n7	9人	m_{\perp}	壮	OH	人0	$\mathrm{q} \perp$	pפ	$\mathrm{n} \exists$	us	ud	PN	$1{ }^{1}$	əО
12	02	69	89	29	99	s9	†9	$\varepsilon 9$	29	19	09	6 S	89

									$\begin{gathered} (992) \\ +W \\ 601 \end{gathered}$	$\begin{array}{c\|} \hline \text { (592) } \\ \mathrm{SH} \\ 801 \end{array}$	$\begin{aligned} & \text { (292) } \\ & 48 \end{aligned}$ $\angle 01$	$\begin{array}{c\|} \hline(\xi 9 z) \\ \mathrm{DS} \\ 90 \mathrm{l} \end{array}$	$\begin{gathered} (z 92) \\ 90 \\ \text { 901 } \end{gathered}$	$\begin{gathered} (192) \\ f+4 \\ +01 \end{gathered}$	$\begin{gathered} (L z z) \\ \partial \forall \\ 68 \end{gathered}$	$\begin{aligned} & (9 z z) \\ & \text { ey } \\ & 88 \\ & \hline \end{aligned}$	
$\begin{gathered} (z z \tau) \\ u y_{98} \end{gathered}$	$\stackrel{\text {（012）}}{1}+$	$\begin{aligned} & (602) \\ & \mathrm{O}_{\mathrm{d}} \\ & \mathrm{t} 8 \end{aligned}$	$\begin{array}{\|r\|} \hline 008680 \tau \\ !9 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \tau \angle L O Z \\ & \mathrm{qd} \\ & \text { z } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon 8 \varepsilon+00 \\ \perp_{18} \\ \hline 18 \end{gathered}$	$\begin{gathered} \stackrel{65}{6} 00 \mathrm{z}_{\mathrm{D}}^{\mathrm{H}} \\ 08 \end{gathered}$	s996961 n \forall 62	$\begin{gathered} 80^{\circ} \mathrm{s} 6 \mathrm{l} \\ \mathrm{td} \\ 82 \end{gathered}$	$\begin{gathered} 2 \pi z 61 \\ 11 \\ \\ \hline 12 \end{gathered}$	$\begin{gathered} \mathrm{z}^{2061} \\ \mathrm{SO}_{92} \end{gathered}$	$\begin{gathered} \angle 0 Z 981 \\ \partial \mathrm{y} \\ \mathrm{GL} \end{gathered}$	$\begin{gathered} \hline 58 \& 81 \\ M+L \end{gathered}$	$\begin{gathered} 6466081 \\ \mathrm{ED} \\ \mathrm{EL} \end{gathered}$	$\begin{gathered} 6+8 \mathrm{ILI} \\ \mathrm{H} \\ \mathrm{zL} \end{gathered}$	$\begin{gathered} 55068 \varepsilon 1 \\ 87 \\ \hline \quad 29 \end{gathered}$		
	$\begin{array}{cc} \text { sto } \\ & 1 \\ & \\ \hline \end{array}$	$\begin{gathered} 09 \angle \mathrm{LZI} \\ { }_{\mathrm{O}}{ }_{\mathrm{ZS}} \end{gathered}$	$\begin{gathered} \hline \angle 1.121 \\ \mathrm{qS} \\ \mathrm{LG} \end{gathered}$	$\begin{gathered} \begin{array}{c} 01 \angle 8 I I \\ \text { US }_{0 S} \end{array} \end{gathered}$	$\begin{gathered} 28+\mathrm{tII} \\ \mathrm{ul} \\ 6 \mathrm{ta} \end{gathered}$	$\mathrm{PO}_{8}^{\mathrm{It}+\mathrm{CII}}$	z898 Lor万 \forall Lt	$\begin{gathered} 2 t \cdot 901 \\ \text { Pd } \\ 90 \end{gathered}$	s 506 zol पप्」 st	$\begin{gathered} \text { L0' } 101 \\ \text { ny } \\ t o t \end{gathered}$	$\begin{aligned} & (86) \\ & \stackrel{\perp}{\varepsilon} \\ & \hline \end{aligned}$	$\begin{gathered} \hline+6: 96 \\ \text { OW } \\ \quad \mathrm{Zt} \\ \hline \end{gathered}$	$\begin{gathered} 5906 \mathrm{Zb} \\ \mathrm{qN} \\ \mathbf{1 0} \end{gathered}$	$\begin{gathered} +2 z^{\prime} 16 \\ 1 Z^{0} \\ 0 t \end{gathered}$	$\begin{gathered} 650688 \\ \lambda_{6 \varepsilon} \end{gathered}$	$\begin{gathered} 29 \angle 8 \\ 1 S^{8 \varepsilon} \\ \hline \end{gathered}$	829t＇s8 qप्d Lع
$\begin{gathered} 08 \varepsilon 8 \\ 1 \gamma_{1} \\ 9 \varepsilon \end{gathered}$	$\begin{gathered} 50666 \\ 19 \\ 98 \end{gathered}$	$\begin{gathered} 968 L \\ \partial S_{t \varepsilon} \end{gathered}$	$\begin{array}{\|c\|} \hline 9766+L \\ s \forall \\ \varepsilon \varepsilon \\ \hline \end{array}$	$\begin{aligned} & 197 L \\ & \text { әפ } \\ & \text { z६ } \end{aligned}$	$\begin{gathered} \varepsilon \varepsilon L \cdot 69 \\ 89 \\ 1 \varepsilon \end{gathered}$	$\begin{gathered} 6 \cdot: 59 \\ \mathrm{uZ}^{2} \\ 0 \varepsilon \end{gathered}$	$\begin{gathered} 9+\zeta \varepsilon 9 \\ \mathrm{n} \mathrm{~S}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 6985 \\ & !\mathrm{N}_{8} \\ & \hline \end{aligned}$	$\begin{gathered} 2 \varepsilon \varepsilon 685 \\ 0 O^{2} \\ L Z \end{gathered}$	$\begin{gathered} \text { L+8'ss } \\ \partial \mathrm{J} \\ 9 z \end{gathered}$	$0886+5$ uW sz	$\begin{gathered} 1966 \text { is } \\ 10 \\ \text { tz } \end{gathered}$	$\begin{gathered} \text { Sit } 60 s \\ \Lambda_{\varepsilon \tau} \\ \hline \end{gathered}$	$\begin{gathered} 88 \angle t \\ !\perp \\ \hline \quad 2 z \\ \hline \end{gathered}$		$\begin{aligned} & 8 \angle 0^{\circ 0 t} \\ & \text { ejo } \\ & 0 \end{aligned}$	$\begin{gathered} 8860 \cdot 6 \varepsilon \\ y_{1} \\ 61 \end{gathered}$
$\begin{gathered} 8+66 \varepsilon \\ 1 \forall^{81} \end{gathered}$	$\begin{gathered} \angle z s t^{\angle S} \leq \varepsilon \\ 1 O_{\angle 1} \end{gathered}$	$\begin{gathered} 990 \cdot \mathrm{Z} \mathrm{\varepsilon} \\ \mathrm{~S}_{91} \end{gathered}$	$\left.\begin{array}{\|c\|} 8 \varepsilon L G^{\circ} 0 \varepsilon \\ d_{\text {Gl }} \end{array} \right\rvert\,$			$\begin{aligned} & 2! \\ & \mathrm{gl} \end{aligned}$	$\begin{aligned} & 41 \\ & 81 \end{aligned}$	$\stackrel{01}{\circ}$	88	8	Q^{L}	99	g	gঃt	$\begin{gathered} \varepsilon \varepsilon \\ \varepsilon \varepsilon \end{gathered}$		$\begin{gathered} 8686 \mathrm{zz} \\ \text { EN } \end{gathered}$
$\begin{gathered} \text { L6LIOR } \\ \partial \mathrm{N}_{01} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86681 \\ \\ \hline \end{gathered}$	$\begin{gathered} \text { +666'S1 } \\ \mathrm{O}_{8} \end{gathered}$	$\stackrel{\angle 900}{ } \mathrm{~N}_{2}+1$	$\begin{gathered} 110 \mathrm{zl} \\ \mathrm{O}_{9} \\ \hline \end{gathered}$	$\begin{gathered} 11800 \\ \mathrm{~g}^{\prime} \\ \hline \end{gathered}$											$\begin{gathered} 2 \pi 10 \% \\ \partial g_{\mathrm{t}}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & 1+69 \\ & ! \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 9zoo't } \\ & \text { } \begin{array}{c} \text { OH } \\ \\ \hline \end{array} \\ & \hline \end{aligned}$	$\stackrel{\angle 1}{\forall L}$	$\begin{aligned} & 9! \\ & \forall 9 \end{aligned}$	$\begin{aligned} & \hline \stackrel{9}{\text { G }} \\ & \forall G \end{aligned}$	$\stackrel{\rightharpoonup!}{\stackrel{1}{4}}$	$\begin{aligned} & \stackrel{\varepsilon}{\forall 1} \\ & \forall \varepsilon \end{aligned}$											$\stackrel{z}{\forall}$	$\mathrm{Cl}_{6}^{6200^{\prime}}$
$\begin{aligned} & \hline 8! \\ & \forall 8 \end{aligned}$							SұU	UЈ	В	$1{ }^{\circ}$	Ә［	L	P00	$\mathrm{O}^{\text {d }}$			$\stackrel{1}{\forall 1}$

This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Mlib 006041

13:07, general, multiple choice, >1 min, fixed. 001
The specific heat of liquid water is 4.184 $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and of steam $2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. The heat of vaporization of water (ℓ) is $2.26 \mathrm{~kJ} / \mathrm{g}$ and its boiling point is $100^{\circ} \mathrm{C}$.

What is the total heat flow when 18 grams of water at $12^{\circ} \mathrm{C}$ are heated to become steam at $109^{\circ} \mathrm{C}$?

1. 47.6 kJ correct

2. 40.7 kJ
3. 31.7 kJ
4. 48.9 kJ
5. over 55 kJ
6. 44.4 kJ
7. under 28 kJ

Explanation:

$$
\begin{aligned}
& \underset{12^{\circ} \mathrm{C}}{\substack{18 \mathrm{~g} \\
\mathrm{H}_{2} \mathrm{O}(\ell)}} \xrightarrow{\text { step } 100^{\circ} \mathrm{C}} \underset{\longrightarrow}{18 \mathrm{~g}} \underset{\substack{\mathrm{O} \\
\mathrm{H}_{2} \mathrm{O}(\ell)}}{\text { step } 2} \\
& \underset{100^{\circ} \mathrm{C}}{\substack{18 \mathrm{~g} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})}} \stackrel{\text { step } 3}{\longrightarrow} \underset{109^{\circ} \mathrm{C}}{\substack{18 \mathrm{~g} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})}} \\
& \text { Step 1: } \frac{4.184 \mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \cdot(18 \mathrm{~g}) \cdot(100-12)^{\circ} \mathrm{C} \\
& =6,627 \mathrm{~J} \\
& \text { Step 2: } \frac{2.26 \mathrm{~kJ}}{\mathrm{~g}} \cdot(18 \mathrm{~g}) \cdot \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}} \\
& =40,680 \mathrm{~J} \\
& \text { Step 3: } \frac{2.03 \mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \cdot(18 \mathrm{~g}) \cdot(109-100)^{\circ} \mathrm{C} \\
& =329 \mathrm{~J} \\
& \text { Total }=6627 \mathrm{~J}+329 \mathrm{~J}+40,680 \mathrm{~J} \\
& =47,636 \mathrm{~J}=47.636 \mathrm{~kJ}
\end{aligned}
$$

13:08, general, multiple choice, <1 min, fixed. 002
Consider the phase diagram for water.

How is the $P T$ phase diagram for water different from $P T$ phase diagrams of other common chemicals?

1. The slope of the phase transition line between solid and liquid is negative. correct
2. The triple point occurs near the boiling point of water.
3. It is not possible to produce supercritical $\mathrm{H}_{2} \mathrm{O}$.
4. Sublimation does not occur.
5. Water as a liquid is less dense than water as a solid.

Explanation:

Water is unique in that the slope of the phase trasition line between solid and liquid is negative. Solid water is less dense than liquid water, where most other solids are more dense than their liquids.

CIC T05 24

14:01, basic, multiple choice, $<1 \mathrm{~min}$, fixed.

003

Which is the best representation of the solvation of a sodium cation in water?

Explanation:

Mlib 044055

14:01, general, multiple choice, >1 min, fixed. 004
Which of the following alcohols would be the least miscible with water?

1. hexanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ correct
2. pentanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$
3. propanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$
4. ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$
5. methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$

Explanation:

The polar OH group is miscible with water but as the nonpolar hydrocarbon chain lengthens, solubility decreases.

ChemPrin3e T08 77

14:05, basic, multiple choice, $<1 \mathrm{~min}$, fixed.
005
The normal boiling point of ethanol is $78^{\circ} \mathrm{C}$.
If the vapor pressure of ethanol is 13.3 kPa at $34.9^{\circ} \mathrm{C}$, calculate the enthalpy of vaporization of ethanol.

1. $42.4 \mathrm{~kJ} / \mathrm{mol}$ correct
2. $54.3 \mathrm{~kJ} / \mathrm{mol}$
3. $68.1 \mathrm{~kJ} / \mathrm{mol}$
4. $84.7 \mathrm{~kJ} / \mathrm{mol}$
5. $95.3 \mathrm{~kJ} / \mathrm{mol}$

Explanation:

Mlib 045049

14:06, basic, multiple choice, $>1 \mathrm{~min}$, fixed.
006
What is the boiling point of a 0.800 molal solution of sugar in water? $K_{\mathrm{b}}=0.512^{\circ} \mathrm{C} / \mathrm{m}$ for water. Sugar does not dissociate in solution and pure water boils at $100^{\circ} \mathrm{C}$.

1. $0.41^{\circ} \mathrm{C}$
2. $100.82^{\circ} \mathrm{C}$
3. $99.59^{\circ} \mathrm{C}$
4. $100.41^{\circ} \mathrm{C}$ correct
5. $100.00^{\circ} \mathrm{C}$

Explanation:

Mlib 045009

14:08, general, multiple choice, >1 min, fixed. 007
Consider the solutions
Z1) $0.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
Z2) 0.6 M NaCl
Z3) 1.0 M sugar
What answer gives the expected order of increasing osmotic pressure?

1. lowest $\mathrm{Z} 1<\mathrm{Z} 2<\mathrm{Z} 3$ highest
2. lowest $\mathrm{Z} 2<\mathrm{Z} 1<\mathrm{Z} 3$ highest
3. lowest $\mathrm{Z} 3<\mathrm{Z} 2<\mathrm{Z} 1$ highest correct
4. lowest $\mathrm{Z} 3<\mathrm{Z} 1<\mathrm{Z} 2$ highest
5. lowest $\mathrm{Z} 2<\mathrm{Z} 3<\mathrm{Z} 1$ highest

Explanation:

The osmotic pressure of a liquid increases as the number of moles of solute particles or ions increases. $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{Na}_{2} \mathrm{SO}_{4}$ means 0.5 mol of SO_{4} ions and 1 mol of Na ions for a total of 1.5 ions. $0.6 \mathrm{~mol} / \mathrm{L} \mathrm{NaCl}$ means 0.6 mol of each Na and Cl ions for a total of 1.2 mol of ions. $1.0 \mathrm{~mol} / \mathrm{L}$ of sugar means 1 mol of sugar molecules. Therefore, since $\mathrm{Na}_{2} \mathrm{SO}_{4}$ has the highest concentration of particles or ions, it will have the highest osmotic pressure. NaCl is next, followed by sugar.

ChemPrin3e T08 61

14:05, basic, multiple choice, $<1 \mathrm{~min}$, fixed.
008
The vapor pressures of pure carbon disulfide and carbon tetrachloride are 360 and 99.8 torr, respectively, at 296 K .

What is the vapor pressure of a solution containing 50.0 g of each compound?

1. 241 torr
2. 33.0 torr
3. 260 torr
4. 274 torr correct
5. 460 torr

Explanation:

