This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. V1:1, V2:1, V3:1, V4:1, V5:2.

Please make sure you write your version numbers on your scantron. Good luck!

Convert E to K

26:09, general, multiple choice, > 1 min, fixed. **001** (part 1 of 1) 5 points

What is the equilibrium constant for the reaction taking place at room temperature $(T = 25^{\circ}\text{C})$ in the battery

$$Zn(s) | Zn^{2+}(aq) || Ce^{4+}(aq) | Ce^{3+}(aq) ?$$

Assume that the number of electrons transferred in the reaction is n = 2.

$\operatorname{Zn}^{2+} + 2 e^{-} \to \operatorname{Zn}$	$E_{\rm red}^{\circ} = -0.76 \ {\rm V}$
$\mathrm{Ce}^{4+} + e^- \to \mathrm{Ce}^{3+}$	$E_{\rm red}^{\circ} = +1.61 \ {\rm V}$

- **1.** 1.33×10^{80} correct
- **2.** 2.37
- **3.** 6.52×10^{79}
- **4.** 1.84×10^2
- **5.** 1.44×10^2
- **Explanation:**

Cell Current

26:04, general, multiple choice, > 1 min, fixed. **002** (part 1 of 1) 5 points

What is the average current generated in the

$$Cu(s) | Cu^{2+}(aq) || Fe^{3+}(aq) | Fe(s)$$

electrochemical cell if 50 g of Cu(s) are used up in a 24 hour period?

$\operatorname{Cu}^{2+} + 2 e^{-} \to \operatorname{Cu}$	$E_{\rm red}^{\circ} = +0.22 \ {\rm V}$
$\mathrm{Fe}^{3+} + 3 e^- \to \mathrm{Fe}$	$E_{\rm red}^{\circ} = -0.04 \ {\rm V}$

1. 1.76 Amp **correct**

2. 42.17 Amp

3. 13.00 Amp

4. 111.85 Amp

5. 2.64 Amp

Explanation:

- **1.** 4.04 V correct
- **3.** 3.2×10^{-2} V
- $\textbf{4.}\;4.03\;\mathrm{V}$

2. 4.08 V

- **5.** 4.01 V
- **Explanation:**

Rctn Rate

20:01, general, multiple choice, > 1 min, fixed. **004** (part 1 of 1) 5 points

What is the rate for the formation of $\mathrm{Cu}(\mathrm{s})$ in the reaction

$$\operatorname{Cu}^{2+}(\operatorname{aq}) + \operatorname{H}_2(\operatorname{g}) \rightleftharpoons \operatorname{Cu}(\operatorname{s}) + 2\operatorname{H}^+(\operatorname{aq})$$

if
$$\frac{\Delta[\mathrm{H}^+]}{\Delta t} = 1.2 \times 10^{-3}$$
?
1. 6×10^{-4} correct
2. 2.4×10^{-3}
3. 1.2×10^{-3}
4. 3×10^{-4}
5. 2×10^{-4}

Explanation:

Rate Law 01

 $\begin{array}{c} 20{:}04,\, {\rm general,\, multiple\, choice,\, >1\, min,\, fixed.}\\ \mathbf{005}\,\, ({\rm part}\,\, 1\,\, {\rm of}\,\, 1)\,\, 5\,\, {\rm points}\\ \\ {\rm What\,\, is\,\, the\,\, rate\, law\,\, for\,\, the\,\, reaction} \end{array}$

$$A + B \rightarrow C?$$

The following data were collected.

Exp	$[A]_{0}$	$[B]_{0}$	Initial Rate
1	0.5	1.2	1.40×10^{-3}
2	1.7	1.2	1.40×10^{-3}
3	0.5	0.7	4.76×10^{-4}

1. rate = $9.72 \times 10^{-4} \, [A]^0 \, [B]^2$ correct

2. rate =
$$5.6 \times 10^{-3} \, [A]^2 \, [B]^0$$

3. rate =
$$1.94 \times 10^{-3} \, [A]^0 \, [B]^2$$

4. rate =
$$4.67 \times 10^{-3} \, [\text{A}]^2 \, [\text{B}]^1$$

5. rate =
$$2.33 \times 10^{-3} \, [A]^0 \, [B]^2$$

Explanation:

Rate Law 02

20:02, general, multiple choice, > 1 min, fixed. **006** (part 1 of 1) 5 points For the reaction

$\mathbf{A} \to \mathbf{B}$

the initial concentration of [A] is 0.1 M. How much of compound [A] is left after 60 minutes if $k = 4.2 \times 10^{-6} \text{ s}^{-1}$?

1. 9.8×10^{-2} correct

- **2.** 4.1×10^{-1}
- **3.** 8.5×10^{-2}
- **4.** 1.0×10^{-1}

5. 3.2×10^{-2}

Explanation:

Arrhenius Calc 20:07, general, multiple choice, > 1 min, fixed.

007 (part 1 of 1) 5 points What is the rate constant for the reaction

 $N_2 O \rightarrow N_2 + O \\$

if the reaction occurs at room temperature $(T = 25^{\circ}\text{C})$ with a pre-exponential factor of $8.0 \times 10^{12} \text{ s}^{-1}$ and an activation energy of 250 kJ/mol.

1. 1.27×10^{-31} correct

2. 1.62×10^{-30}

3. 7.23×10^{10}

4. 9.07×10^9

5. 3.21×10^8

Explanation:

Rctn Mechanism

20:06, general, multiple choice, > 1 min, fixed. **008** (part 1 of 1) 5 points

The reaction

$$NO_2 + CO_2 \rightarrow CO + NO_3$$

has a rate law that is second order in NO_2 . Which of these statements describes the mechanism that explains this unexpected rate law?

1. A multi-step reaction mechanism in which a first bimolecular collision between NO_2 molecules is the rate determining step. **correct**

2. A single-step reaction mechanism in which a bimolecular collision between NO_2 molecules is the rate determining step.

3. A single-step reaction mechanism in which a bimolecular collision between NO_2 and CO_2 is the rate determining step.

4. A multi-step reaction mechanism in which

a first unimolecular decomposition of NO_2 is the rate determining step.

5. A single-step reaction mechanism in which a first unimolecular decomposition of NO_2 is the rate determining step.

Explanation: