		œ	<u> </u>		σ ι	~		ω	10		-			-			ω			-	
(223)	Ţ	7	32.9054	Cs	ŭ	85.4678	Rb	7	39.0983	ㅈ	9	22.9898	Na	1	6.941	□.		1.0079	т		- 1
(226)	Ra	88	137.327	Ba	96	87.62	လို	8	40.078	Ca	20	24.3050	Mg	12	9.0122	Be	4	2	2A		-
(227)	Ac	68	138.9055	La	57	88.9059	~	39	44.9559	Sc	21	ω	а В								
(261)	Ŗŕ	104	178.49	Ť	72	91.224	Ŋ	40	47.88	Ę	22	4	4B								Peri
(262)	Db	105	180.9479	Ta	73	92.9064	٨b	41	50.9415	<	23	თ	ъВ								odic
(263)	gS	106	183.85	٤	74	95.94	Mo	42	51.9961	ç	24	6	6B								Tal
(262)	Bh	107	186.207	Re	75	(98)	7	43	54.9380	Mn	25	7	7B								ble
(265)	Hs	108	190.2	So	76	101.07	Ru	44	55.847	Fe	26	8	7								of th
(266)	Mt	109	192.22	r	77	102.9055	Rh	45	58.9332	ဂွ	27	9	– 88 –								e El
			195.08	Pţ	82	106.42	Pd	46	58.69	<u>Z</u>	28	10									eme
			196.9665	Au	62	107.8682	Ag	47	63.546	Сп	29	11	1 B								ints
			200.59	Hg	08	112.411	S	48	65.39	Zn	30	12	2B								
			204.3833	Ⅎ	81	114.82	ln	49	69.723	Ga	31	26.9815	A	13	10.811	Β	5	13	ЗA		
			207.2	Pb	82	118.710	Sn	50	72.61	Ge	32	28.0855	<u>ง</u>	14	12.011	റ	6	14	4A		
			208.9804	<u>D</u>	83	121.75	Sp	51	74.9216	As	33	30.9738	ס	15	14.0067	z	7	15	5A		
			(209)	Po	84	127.60	Te	52	78.96	Se	34	32.066	ഗ	16	15.9994	0	8	16	6A		
			(210)	At	85	126.9045	_	53	79.904	Βŗ	35	35.4527	<u>0</u>	17	18.9984	П	9	17	7A		
			(222)	Rn	98	131.39	Xe	54	83.80	Ţ	36	39.948	Ar	18	20.1797	Ne	10	4.0026	He	N	¹⁸ A

1 63 64 Eu Gd	1 63 64 65 Eu Gd Tb	1 Eu Gd Tb Dy	1 Eu Gd Tb Dy Ho	1 Eu Gd Tb Dy Ho Er	1 Eu Gd Tb Dv Ho Er Tm
64 Gd	64 65 Gd Tb	64 65 66 Gd Tb Dy	64 65 66 67 Gd Tb Dy Ho	64 65 66 67 68 Gd Tb Dy Ho Er	64 65 66 67 68 69 Gd Tb Dy Ho Er Tm
	Tb	65 66 Tb Dy	65 66 67 Tb Dy Ho	65 66 67 68 Tb Dy Ho Er	65 66 67 68 69 Tb Dy Ho Er Tm
66 67 68 69 70 Dy Ho Er Tm Yb	67 68 69 70 Ho Er Tm Yb	68 69 70 Er Tm Yb	69 70 Tm Yb	Yb 07	

This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

Msci 21 2113

20:08, general, multiple choice, > 1 min, fixed. 001

Consider the voltaic cell

Ga |
$$Ga^{3+}(1 M) || Ni^{2+}(1 M) | Ni$$

 $\begin{array}{ll} \mathrm{Ga}^{3+} + 3 \ e^- \to \mathrm{Ga} & E^0 = -0.560 \ \mathrm{V} \\ \mathrm{Ni}^{2+} + 2 \ e^- \to \mathrm{Ni} & E^0 = -0.23 \ \mathrm{V} \\ \mathrm{What} \ \mathrm{is \ the \ maximum \ available \ energy \ to} \end{array}$

be obtained from the cell?

1. 191 kJ correct

2. 31.8 kJ

3. 95.5 kJ

4. 63.7 kJ

5. 159.2 kJ

Explanation:

ChemPrin3e T12 46

20:09, basic, multiple choice, < 1 min, fixed. 002

The standard voltage of the cell

 $Ag(s) | AgBr(s) | Br^{-}(aq) || Ag^{+}(aq) | Ag(s)$

is +0.73 V at 25° C.

Calculate the equilibrium constant for the cell reaction.

- **1.** 5.1×10^{14}
- **2.** 2.2×10^{12} correct
- **3.** 2.0×10^{-15}
- **4.** 4.6×10^{-13}

5. 3.9×10^{-29}

Explanation:

Msci 04 1010

20:01, general, multiple choice, $> 1 \min,$ fixed. \$003\$

Balance the net ionic equation

$$I^- + NO_2^- \rightarrow NO + I_2$$

(in acidic solution).

What is the sum of the coefficients? Use H^+ rather than H_3O^+ where appropriate.

1. 11

2. 13 **correct**

3. 15

4. 17

5. 19

Explanation:

The oxidation number of I changes from -1 to 0, so I is oxidized. The oxidation number of N changes from +3 to +2, so N is reduced. We set up oxidation and reduction half reactions:

Oxidation: $I^- \to I_2$

Reduction: $\mathrm{NO}_2^- \to \mathrm{NO}$

N atoms are balanced. We need two I^- ions to balance I:

Oxidation: $2 I^- \rightarrow I_2$

In acidic solution we use H_2O and H^+ to balance O and H atoms, adding the H_2O to the side needing oxygen:

Reduction: $2H^+ + NO_2^- \rightarrow NO + H_2O$

Next, we balance the total charge by adding electrons. In the reduction reaction thus far there is a total charge of +1 on the left and 0 on the right. One electron is added to the left:

Oxidation: $2 I^- \rightarrow I_2 + 2 e^-$

Red: $1e^- + 2H^+ + NO_2^- \rightarrow NO + H_2O$

The number of electrons gained by N must equal the number of electrons lost by I. We multiply the reduction reaction by 2 to balance the electrons:

Oxidation: $2 I^- \rightarrow I_2 + 2 e^-$

Reduction: $2e^- + 4H^+ + 2NO_2^- \rightarrow$ $2 \overline{NO} + 2 H_2O$ Adding the half-reactions gives the balanced equation

$$2\,\mathrm{I}^- + 4\,\mathrm{H}^+ + 2\,\mathrm{NO}_2^- \rightarrow \mathrm{I}_2 + 2\,\mathrm{NO} + 2\,\mathrm{H}_2\mathrm{O}$$

Msci 21 1221

20:07, general, multiple choice, $> 1 \min$, fixed.

004

Consider the half-reactions	
$\mathrm{Cu}^{2+} + 2 e^- \to \mathrm{Cu}$	$E^{0} = 0.34 \text{ V}$
$\mathrm{Hg}_2^{2+} + 2e^- \rightarrow 2\mathrm{Hg}$	$E^{0} = 0.80 \text{ V}$
$\operatorname{Pd}^{\bar{2}+} + 2 e^{-} \to \operatorname{Pd}$	$E^0 = 0.99 \text{ V}$
$\mathrm{Au}^{3+} + 3 e^- \to \mathrm{Au}$	$E^{0} = 1.42 \text{ V}$
Of the species listed the	strongest reducing

agent is

1. Cu correct

2. Au

3. Au³⁺

4. Pd

5. Hg_2^{2+}

Explanation:

The reducing agents (the agents that lose electrons) are on the right hand side of the equation. As the E^0 of the reduction halfcell reaction decreases, the strength of the reducing agent increases.

Msci 21 1212

20:07, general, multiple choice, $> 1 \min$, fixed. 005

Consider the following standard reduction po-

 $\begin{array}{ll} \bigcirc \mathbf{u} & + 2 \, e^- \to \mathrm{Cu} & E^0 = 0.337 \, \mathrm{V} \\ \mathrm{Ag^+} + 1 \, e^- \to \mathrm{Ag} & E^0 = 0.7994 \, \mathrm{V} \\ \mathrm{Au^+} + 1 \, e^- \to \mathrm{Au} & E^0 \\ \mathrm{Which} & e^{f^-} \end{array}$

Which of the following statements about oxidizing strengths of Group IB metal ions is true?

1. Cu^{2+} is a stronger oxidizing agent than Ag^+ .

2. Cu^{2+} is a stronger oxidizing agent than Au^+ .

3. Ag⁺ is a stronger oxidizing agent than Au^+ .

4. Nothing can be predicted about oxidizing strengths from the data given.

5. Ag^+ is a stronger oxidizing agent than Cu^{2+} . correct

Explanation:

Mlib 08 0031

20:05, general, multiple choice, $> 1 \min$, fixed. 006

If 289,500 Coulombs is passed through a solution of lead(II) nitrate $(Pb(NO_3)_2)$ how many moles of metallic lead will be produced?

1.3

2. 2

3. 1.5 **correct**

4.0.667

Explanation:

Mlib 08 0093

20:11, basic, multiple choice, $> 1 \min$, fixed. 007

This diagram represents a simple battery (Daniell cell).

Which of the following is true?

1. The zinc electrode is positively charged.

2. The reaction occuring at the copper electrode is $Cu \rightarrow Cu^{2+} + 2e^{-}$.

3. Oxidation is occuring at the zinc electrode. **correct**

4. The zinc electrode is eroded away and the Zn^{2+} ions move through the salt bridge and are deposited on the copper electrode.

Explanation:

ChemPrin3e T12 62 20:11, basic, multiple choice, < 1 min, fixed. 008

In the cell shown, A is a standard $Ag^+ | Ag$ electrode connected to a standard hydrogen electrode (SHE).

If the voltmeter reading is +0.80 V, what is the equation for the cell reaction?

- 1. $Ag(s) \rightarrow Ag^+(aq) + e^-$
- **2.** $Ag^+(aq) + e^- \rightarrow Ag(s)$

3.
$$\operatorname{Ag}(s) + \operatorname{H}^+(aq) \to \operatorname{Ag}^+(aq) + \frac{1}{2}\operatorname{H}_2(g)$$

4.
$$Ag^+(aq) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + H^+(aq)$$

correct

Explanation:

Msci 21 0901

20:06, general, multiple choice, $> 1 \min$, fixed. 009

Consider the following statements:

- Z1) In voltaic cells, the flow of electrons is spontaneous.
- Z2) In voltaic cells, the electrons flow in the external circuit (through the wire) from the anode to the cathode.
- Z3) In voltaic cells, the anode is the positive electrode.

Which of these statements is (are) true?

1. Z1 only

2. Z1 and Z3 only

- 3. Z2 and Z3 only
- **4.** Z1, Z2 and Z3
- 5. Z1 and Z2 only correct

Explanation:

 $\begin{array}{c} {\bf Msci~21~0908}\\ 20{:}07,\,{\rm general},\,{\rm multiple~choice},\,>1\,{\rm min},\,{\rm fixed}.\\ {\bf 010} \end{array}$

Consider the half-reactions

$\mathrm{Mn}^{2+} + 2 \ e^- \to \mathrm{Mn}$	$E^0 = -1.029 \text{ V}$
$Ga^{3+} + 3 e^- \rightarrow Ga$	$E^0 = -0.560 \text{ V}$
$\mathrm{Fe}^{2+} + 2 \ e^- \to \mathrm{Fe}$	$E^0 = -0.409 \text{ V}$
$\operatorname{Sn}^{2+} + 2e^{-} \to \operatorname{Sn}$	$E^0 = -0.136 \text{ V}$
Using the redox couples	to establish a
voltaic cell which reaction	would be non-

voltaic cell, which reaction would be non-spontaneous?

- 1. $2 \operatorname{Ga}^{3+} + 3 \operatorname{Fe} \rightarrow 2 \operatorname{Ga} + 3 \operatorname{Fe}^{2+}$ correct 2. $\operatorname{Fe}^{2+} + \operatorname{Mn} \rightarrow \operatorname{Mn}^{2+} + \operatorname{Fe}$
- **3.** Sn^{2+} + Fe \rightarrow Sn + Fe²⁺
- **4.** $2 \text{ Ga} + 3 \text{ Sn}^{2+} \rightarrow 2 \text{ Ga}^{3+} + 3 \text{ Sn}$

5.
$$\operatorname{Sn}^{2+} + \operatorname{Mn} \rightarrow \operatorname{Sn} + \operatorname{Mn}^{2+}$$

Explanation:

Only $2 \operatorname{Ga}^{3+} + 3 \operatorname{Fe} \to 2 \operatorname{Ga} + 3 \operatorname{Fe}^{2+}$ has a negative E_{cell}^0 , so it is the only reaction here

that is nonspontaneous.

20:10, basic, multiple choice, < 1 min, fixed. 011

Consider the cell

The cell voltage is

1. less than E^0 . correct

2. greater than E^0 .

3. the same as E^0 .

4. Not enough information is given.

Explanation:

DAL 03 0408

20:07, general, multiple choice, < 1 min, fixed. 012

Using the standard potential tables, what is the largest approximate E^0 value that can be achieved when two half cell reactions are combined to form a battery?

1.6 V correct

2. 3 V

3. −3 V

4. −6 V

Explanation:

$\begin{array}{c} \mbox{Msci 21 0911}\\ 20:08, \mbox{ general, multiple choice, }>1\mbox{ min, fixed.}\\ 013\\ \mbox{Consider the voltaic cell}\\ \mbox{ In } \mid \mbox{ In}^{3+}\ (1\ {\rm M}) \mid \mid \\ \mbox{ Ru}^{3+}\ (1.0\ {\rm M}), \mbox{ Ru}^{2+}\ (0.010\ {\rm M}) \mid {\rm C}\\ \mbox{ In}^{3+}\ +3\ e^- \rightarrow \mbox{ In } E_0 = -0.34\ {\rm V}\\ \mbox{ Ru}^{3+}\ +1\ e^- \rightarrow \mbox{ Ru}^{2+}\ E_0 = +0.25\ {\rm V}\\ \mbox{ The experimental cell potential for the cell}\\ \mbox{ is approximately} \end{array}$

1. + 0.11 V.

2. +0.59 V.

3. +0.71 V. correct

4. +0.30 V.

5. +0.26 V.

Explanation:

$\mathbf{Mlib} \ \mathbf{50} \ \mathbf{8052}$

20:11, general, multiple choice, $> 1 \min$, fixed. 014

The small button cells used in hearing aids and hand-calculators are being replaced by what kind of cells?

1. Ni-Cad

2. fuel

3. zinc-air correct

4. lead-acid

Explanation:

CIC T08 15

20:11, basic, multiple choice, < 1 min, fixed. 015

Which type of widely used battery is NOT rechargeable?

1. alkaline correct

2. lithium-ion

- **3.** lead-acid (storage batteries)
- 4. nickel-cadmium (NiCad)

Explanation:

ChemPrin3e T13 06

16:02, general, multiple choice, $< 1 \min$, fixed. 016

Consider the reaction

$$2 \operatorname{NO}_2(g) + F_2(g) \rightarrow 2 \operatorname{NO}_2F(g)$$

 $\label{eq:rate} {\rm rate} = -\frac{\Delta[{\rm F}_2]}{\Delta t}\,.$ What is another form of the rate of the reaction?

1.
$$-\frac{2\Delta[\text{NO}_2]}{\Delta t}$$

2. $\frac{\Delta[\text{NO}_2\text{F}]}{\Delta t}$
3. $\frac{\Delta[\text{NO}_2]}{2\Delta t}$
4. $-\frac{\Delta[\text{NO}_2]}{\Delta t}$
5. $\frac{\Delta[\text{NO}_2\text{F}]}{2\Delta t}$ correct

Explanation:

017

If the rate of a reaction is Rate $= k [A]^3$, then appropriate units for the rate constant k are

1.
$$sec^{-1}$$

- **2.** mol· liter⁻¹·sec⁻¹
- **3.** liter $\cdot \text{mol}^{-1} \cdot \text{sec}^{-1}$
- 4. $\operatorname{mol}^2 \cdot \operatorname{liter}^{-2} \cdot \operatorname{sec}^{-1}$
- **5.** $liter^2 \cdot mol^{-2} \cdot sec^{-1}$ correct
- **6.** $\operatorname{mol}^3 \cdot \operatorname{liter}^{-3} \cdot \operatorname{sec}^{-1}$
- 7. $liter^3 \cdot mol^{-3} \cdot sec^{-1}$

Explanation:

$$Rate = k [A]^{3}$$
$$\frac{\text{mol/liter}}{\text{sec}} = k \left(\frac{\text{mol}}{\text{liter}}\right)^{3}$$
$$\frac{\text{mol}}{\text{liter} \cdot \text{sec}} = k \left(\frac{\text{mol}^{3}}{\text{liter}^{3}}\right)$$
$$k = \frac{\text{mol}}{\text{liter} \cdot \text{sec}} \left(\frac{\text{liter}^{3}}{\text{mol}^{3}}\right)$$
$$= \frac{\text{liter}^{2}}{\text{mol}^{2} \cdot \text{sec}}$$

$Msci \ 16 \ 0324 b$

16:02, general, multiple choice, < 1 min, fixed. 018

Three separate experiments were performed on the rate of the reaction

 $3 A_2 + 2 B \rightarrow 2 A_3 B.$

The measured initial concentrations of A_2 (in moles per liter) are shown below along with the measured initial rates of formation of A_3B (moles per liter per second).

Trial	$\begin{array}{c} \text{Initial} \\ [A_2]_0 \\ \text{M} \end{array}$	Initial [B] ₀ M	Initial rate M/s
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$1.2 \\ 1.2 \\ 1.8$	$2.4 \\ 1.2 \\ 2.4$	8.0×10^{-8} 4.0×10^{-8} 1.8×10^{-7}

What is the order of the reaction?

1. first order in $[A_2]$ and first order in [B]

2. second order in [A₂] and first order in [B] **correct**

3. first order in $[A_2]$ and second order in [B]

4. third order in [A₂] and second order in [B]

5. None of these is correct.

Explanation:

Rate = $k [A_2]^x [B]^y$

$$\frac{\text{Rate}_3}{\text{Rate}_1} = \frac{k \, [\text{A}_2]_3^x \, [\text{B}]_3^y}{k \, [\text{A}_2]_1^x \, [B]_1^y}$$
$$\frac{1.8 \times 10^{-7}}{8.0 \times 10^{-8}} = \left(\frac{1.8}{1.2}\right)^x \, \left(\frac{2.4}{2.4}\right)^y$$
$$2.25 = 1.5^x$$
$$\ln 2.25 = x \ln 1.5$$
$$x = \frac{\ln 2.25}{\ln 1.5}$$
$$= 2$$

$$\frac{\text{Rate}_1}{\text{Rate}_2} = \frac{k \, [\text{A}_2]_1^2 \, [\text{B}]_1^y}{k \, [\text{A}_2]_2^2 \, [\text{B}]_2^y}$$
$$\frac{8.0 \times 10^{-8}}{4.0 \times 10^{-8}} = \left(\frac{1.2}{1.2}\right)^2 \left(\frac{2.4}{1.2}\right)^y$$
$$2^1 = 2^y$$
$$y = 1$$

ChemPrin3e T13 33

16:03, basic, multiple choice, < 1 min, fixed. \$019\$

Technetium-99m, used to image the heart and brain, has a half-life of 6.00 h.

What fraction of technetium-99m remains in the body after 1 day?

1. 0.0625 **correct**

2. 0.250

3. 0.0313

4. 0.125

Explanation:

ChemPrin3e T13 24

16:03, basic, multiple choice, < 1 min, fixed. 020 For a first-order reaction, after 2.00 min, 20%

For a first-order reaction, after 2.00 min, 20% of the reactants remain.

Calculate the rate constant for the reaction.

1. 0.0134 s^{-1} correct

2. 0.000808 s⁻¹

3. 74.6 s^{-1}

4. 0.00582 s^{-1}

5. 0.00186 s^{-1}

Explanation:

Msci 16 0410 2nd order

16:03, general, multiple choice, $> 1 \min$, fixed. 021

Consider the following reaction and its rate constant.

$$A \rightarrow B$$
 $k = 0.103 M^{-1} \cdot min^{-1}$

What will be the concentration of A after 1 hour if the reaction started with a concentration of 0.400 M ?

0.115 M correct
 0.384 M
 8.28 × 10⁻⁴ M
 0.152 M
 0.236 M
 0.0843 M
 0.308 M
 0.361 M

Explanation:

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = a \, k \, t$$

$$\frac{1}{[A]_t} = \frac{1}{[A]_0} + a \, k \, t$$

$$= \frac{1}{0.400} + (0.103 \, \mathrm{M}^{-1} \cdot \mathrm{min}^{-1}) \, (60 \, \mathrm{min})$$

$$= 8.68$$

$$[A]_t = 0.115 \, \mathrm{M}$$

16:03, general, multiple choice, $> 1 \min$, fixed.

022

For the second-order reaction

 $2 \, A \rightarrow products$

the reciprocal of the concentration of A remaining is plotted as a function of time.

What is the slope of the resulting line?

1. 2k correct

2. 2 k t

3. -2k

4. k

5. -kt

Explanation:

This question uses the straight line plot for the integrated rate law for a second order reaction. The equation for this is

$$\frac{1}{[A]} = a \, k \, t + \frac{1}{[A]_0}$$

The slope of this line is a k since the reaction is plotted as a function of time, and since the coefficient of the reactant A is 2, the slope is 2 k.

Mlib 05 7027

16:05, general, multiple choice, $> 1 \min$, fixed. 023

Based on the molecular model of chemical reactions discussed in class, which of the following is not required for a reaction to occur?

1. A collision between the molecules which appear in the net chemical equation. **correct**

2. A certain minimum amount of energy.

3. The proper orientation between reacting species.

4. A collision between the species involved in the mechanism.

Explanation:

Msci 16 1016

16:05, general, multiple choice, $> 1 \min$, fixed. 024

For a given single step reaction the activation energy for the forward reaction is 40 kJ/mol rxn and the thermodynamic $\Delta E = -60$ kJ/mol rxn.

What is the activation energy for the RE-VERSE reaction?

1.
$$E_{\rm a} = 40 \text{ kJ/mol rxn}$$

2. $E_{\rm a} = 60 \text{ kJ/mol rxn}$

3. $E_{\rm a} = 20 \text{ kJ/mol rxn}$

4. $E_{\rm a} = 100 \text{ kJ/mol rxn correct}$

5. $E_{\rm a} = 0 \text{ kJ/mol rxn}$

Explanation:

 $\Delta H = -60 \text{ kJ/mol}$, so this is an exothermic reaction:

 $E_{\rm a}$ for the forward reaction = 40 kJ/mol, so $E_{\rm a}$ for the reverse reaction = 100 kJ/mol.

White 9

16:07, general, multiple choice, $< 1 \min,$ fixed. $$\mathbf{025}$$

The rate constant for a reaction is 1.50×10^{-8} s⁻¹ at 0°C and has an activation energy of 45 kJ·mol⁻¹.

What is the predicted rate constant at 200° C?

1.
$$6.7 \times 10^{-5} \text{ s}^{-1}$$
 correct

2.
$$3.1 \times 10^{-6} \text{ s}^{-1}$$

3.
$$1.51 \times 10^{-8} \text{ s}^{-1}$$

4. 68.4 s^{-1}

5. $7.4 \times 10^{-11} \text{ s}^{-1}$

Explanation:

Msci 16 0908x

16:06, general, multiple choice, $> 1 \min$, fixed. 026

Consider the multistep reaction that has the overall reaction

$$2 \mathbf{A} + 2 \mathbf{B} \to \mathbf{C} + \mathbf{D}.$$

What is the rate law expression that would correspond to the following proposed mechanism?

$A + B \rightleftharpoons I$	(fast)
$\mathrm{I} + \mathrm{B} \rightarrow \mathrm{C} + \mathrm{X}$	(slow)
$X + A \rightarrow D$	(fast)

1. Rate = $k [A]^2 [B]$

2. Rate
$$= k [I] [B]$$

3. Rate
$$= k [A]^2$$

- **4.** Rate = k [A] [I] [B]
- **5.** Rate = k [A]
- **6.** Rate = k [A] [B]
- 7. Rate = $k [A] [B]^2$ correct
- 8. Rate = $k [A]^2 [B]^2$

9. Rate = k [B]

Explanation:

The slowest step is the rate determining step and is used to write the rate law.

$$\operatorname{Rate} = k' [I] [B]$$

The rate law must be written in terms of concentrations of reactants and products only,

so concentrations of intermediates cannot be included and a substitute must be found for [I]. The step that immediately precedes this slow step can be treated as an equilibrium system where

$$\begin{aligned} \text{Rate}_{\text{forward}} &= k_{\text{f}} \left[\text{A} \right] \left[\text{B} \right] = k_{\text{r}} \left[\text{I} \right] = \text{Rate}_{\text{reverse}} \\ \left[\text{I} \right] &= \frac{k_{\text{f}}}{k_{\text{r}}} \left[\text{A} \right] \left[\text{B} \right] \end{aligned}$$

This can be substituted to give the equation

Rate =
$$\frac{k' k_{\rm f}}{k_{\rm r}} [A] [B]^2 = k [A] [B]^2$$

ChemPrin3e T13 66

16:06, basic, multiple choice, < 1 min, fixed. 027

The reaction between nitrogen dioxide and carbon monoxide is thought to occur by the following mechanism:

$$2 \operatorname{NO}_2(g) \rightarrow \operatorname{NO}_3(g) + \operatorname{NO}(g)$$

 $\operatorname{NO}_3(g) + \operatorname{CO}(g) \rightarrow \operatorname{NO}_2(g) + \operatorname{CO}_2(g)$
 k_2 , fast

What is the rate law for this mechanism?

1. rate =
$$k_1 k_2 [NO_2]^2 [CO]$$

2. rate = $\frac{k_1}{k_2} [NO_2]^2 [CO]$
3. rate = $k_1 [NO_3] [NO]$
4. rate = $k_2 [NO_3] [CO]$
5. rate = $k_1 [NO_2]^2$ correct

Explanation:

SPARKS Energy 08

16:05, basic, multiple choice, > 1 min, fixed. 028

Consider the following potential energy diagram.

If a catalyst were added, the height of which arrow would change? How would it change?

1. *a*; the activation energy would be lower.

2. *b*; the activation energy would be lower. **correct**

3. *c*; the activation energy would be higher.

4. *a*; the potential energy of the reactants would be higher.

5. f; the potential energy of the products would be lower.

Explanation:

 $\begin{array}{c} \textbf{DAL Ozone Destr}\\ 31:02, \text{ general, multiple choice, } < 1 \text{ min, .}\\ \textbf{029} \end{array}$

Which of the following is a catalyst that has contributed to the destruction of the ozone layer?

1. Cl \bullet correct

2. CF_3Cl

3. Cl⁻

4. O₃

5. O•

Explanation:

16:08, basic, multiple choice, < 1 min, fixed. 030 Biochemical reactions are most often catalyzed by

1. enzymes correct

2. NSAIDs

- **3.** monomers
- 4. isomers
- 5. heat energy
- 6. prostaglandins

Explanation: