CH301 Worksheet 8—Molecular Orbital Theory For each of the following statements, identify if it is true or false. If it is false, correct it to make it true. | 1. | The concept of σ and π bonds is developed for both VSEPR and MO theory. | |-----|--| | 2. | There are three homonuclear diatoms from the n=2 row that have a bond order of 0. | | 3. | When constructing the MO energy levels, the number of molecular orbitals is always equal to the number of atomic orbitals and is twice the number of antibonding orbitals. | | 4. | Hund, Pauli and Aufbau rules that were developed for electronic configurations of atoms also apply to electronic configurations in MO theory. | | 5. | The bond order in MO theory is another way of calculating the number of bonds between two atoms in a Lewis structure. | | 6. | Both atomic oxygen and diatomic oxygen are paramagnetic. | | 7. | The maximum bond order for a diatomic species is 3 and corresponds to compounds with the largest bond lengths and lowest bond energies. | | 8. | The sequence of diatoms and diatomic ions: O_2+ , O_2 , O_2- , decreases in bond order. | | 9. | The sequence or diatoms and diatomic ions, : N_2+ , N_2 , N_2- , decreases in bond length. | | 10. | In order to argue for paramagnetism in O_2 , you must fill in the correct electronic MO configuration (symmetrical rather than sad face.) |