Fall 2008 CH301--The TA's gift to you—a practice exam 1

1. What is the energy (E) of a photon that has a wavelength (λ) of 70 nm?

- A. $2.84 \times 10^{-18} \text{ J}$
- B. 6.51x10⁻¹⁹ J
- C. 7.52x10⁻¹⁹ J
- D 1.28x10⁻¹⁸ J
- E. 3.27x10⁻¹⁷ J
- 2. Which if the following statement(s) is/are true?
 - I. Since it is observed experimentally that blackbody radiators emit less power at higher frequencies, the power radiated must be inversely proportional to the square of the frequency.
 - II. The failure of classical mechanics to predict the behavior of blackbody radiators is called the photoelectric effect.
 - III. After the threshold frequency is reached, further increasing the frequency of light would increase the velocity of ejected electrons.
 - IV. The quantized energy levels of electrons result in the continuous absorption/emission spectra of gases.
 - A. I and III
 - B. I, II, IV
 - C. III only
 - D. II only
 - E. II, III, IV

3. For the hydrogen atom, emitted light with a frequency of 2.35 x 10^{14} Hz corresponds most closely to an electronic transition between which two energy levels?

- A. 2 and 3
- B. 1 and 2
- C. 1 and 3
- D. 3 and 5
- E. 4 and 5

4. Which of the following statement(s) is/are true regarding Particle in a Box?

- I. The Energy of the particle is nonzero and continuous.
- II. The number of possible wavelengths is limited by boundary conditions
- III. Within a given energy level, as the length of the box increases, the energy of the particle decreases
 - A. I, II, and II
 - B. I only
 - C. II only
 - D. I and II
 - E. II and III

5. If we know the position of an electron (mass: 9.1×10^{-31} kg) with an uncertainty of 10^{-7} m, what would be the minimum uncertainty in the electrons's velocity?

 $\begin{array}{cccc} A. & 580 \ m \cdot s^{-1} \\ {}^{B.} & 610 \ m \cdot s^{-1} \\ {}^{C.} & 670 \ m \cdot s^{-1} \\ {}^{D.} & 750 \ m \cdot s^{-1} \\ {}^{E.} & 800 \ m \cdot s^{-1} \end{array}$

6. What is the deBroglie wavelength (λ) of an 800g object traveling at 30.0 m·hr⁻¹?

- A. $5.25 \times 10^{-32} \text{ m}$
- B. $9.94 \times 10^{-32} \text{ m}$
- C. $6.23 \times 10^{-32} \text{ m}$
- D. 7.59x10⁻³² m
- E. 8.37×10^{-32} m

7. Which of the following statement(s) is/are true regarding the Schrödinger and wave equations?

- I. The exact location of the electron can be calculated using the Schrödinger equation.
- II. Three dimensional solutions to the Schrödinger equation are done using polar coordinates because it simplifies the math.
- III. Every solution to the Schrödinger equation contains at least one repulsive potential energy term.
- A. II only
- B. I only
- C. III only
- D. I and III
- E. II and III

8. Which of the following is not a possible set of quantum numbers?

- A. n = 4, l = 3, $m_l = -1$, $m_s = \frac{1}{2}$
- B. $n = 1, l = 0, m_l = 0, m_s = \frac{1}{2}$
- C. $n = 3, l = 1, m_l = -1, m_s = -\frac{1}{2}$
- D. n = 5, l = 4, $m_l = -5$, $m_s = -\frac{1}{2}$
- E. $n = 9, l = 8, m_l = 6, m_s = \frac{1}{2}$
- 9. Which of the following is not a possible set of quantum numbers?
 - A. n = 3, l = 2, $m_l = -2$, $m_s = -\frac{1}{2}$ B. n = 2, l = 1, $m_l = -1$, $m_s = \frac{1}{2}$ B. n = 5, l = 0, $m_l = 2$, $m_s = 1$ C. n = 7, 1 = 5, $m_l = -5$, $m_s = -\frac{1}{2}$ D. n = 8, l = 0, $m_l = 0$, $m_s = \frac{1}{2}$
- 10. The following configuration violates which rule(s)?
 - $\begin{array}{c} 3p \uparrow \downarrow _ \uparrow _ \\ 3s \uparrow \downarrow \\ 2p \uparrow \downarrow _ \uparrow \downarrow \\ 2s \uparrow \downarrow \\ 1s \uparrow \downarrow \end{array}$

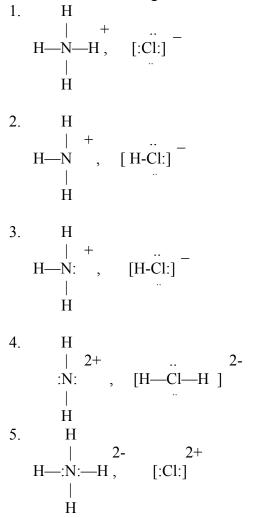
 - I. Aufbau Principle
 - II. Pauli Exclusion Principle
 - III. Hund's Rule
 - A. I and II
 - B. I only
 - C. II only
 - D. III only
 - E. II and III

- 11. The electron configuration $[Ar]4s^23d^{10}4p^4$ could be the electron configuration of which of the following?
 - 1. Se 2. As^{2-}

 - 3. S
 - 4. Te
 - 5. None of them

12. The electron configuration $[Ar]4s^23d^9$ could be the electron configuration of which of the following?

- D. Ag
- E. Ni
- F. Cu
- G. Zn
- H. None of them
- 13. The electron configuration $[Kr]5s^{1}4d^{5}$ could be the electron configuration of which of the following?
 - 1. Nb
 - 2. Tc
 - 3. Mo
 - 4. Cr
 - 5. None of them
- 14. Which of the following correctly describes period(s) and group(s) in the periodic table?
 - III. Periods are the eighteen columns, groups are the seven rows.
 - IV. Groups are the eighteen columns, periods are the seven rows.
 - V. Groups and periods are synonyms for the columns.
 - VI. Groups and periods are synonyms for the rows.
 - VII. The group is the main block of the period table while the period includes only the lanthanide series and actinide series.
- 15. What best explains the increase in ionization energy up and to the right of the periodic table?
 - 1. Increasing effective nuclear charge.
 - 2. Decreasing electron affinity.
 - 3. Increasing electronegativity.
 - 4. Increasing atomic radius.
 - 5. Decreasing shell stability.


16. Rank the following species from least to greatest ionization energy: Oxygen (O), Potassium (K), Sulfur (S) and Sodium (Na).

- J. S < O < Na < K
- K. Na < K < O < S
- L. K < Na < O < S
- M. K < Na < S < O
- N. O < S < K < Na

17. Rank the following from least to greatest ionization energy: C, N, O

- 1. O < C < N
- 2. O < N < C
- 3. C < N < O
- 4. C < O < N
- 5. N < C < O

18. Which of the following is the correct lewis structure for NH₄Cl?

19. Using charge density, rank the lattice energy of the following compounds from least to greatest: KF, BeO, MgS, MgBr₂.

- A. $BeO < MgS < MgBr_2 < KF$
- $_{B} KF < BeO < MgS < MgBr_2$
- C. BeO < KF < MgBr₂ < MgS
- D. $MgBr_2 < MgS < BeO < KF$
- $E. KF < MgBr_2 < MgS < BeO$

20. Which of the following species would have three resonance structures?

- ^{1.} CH₃COO⁻
- ^{2.} NO₂⁻
- 3. NO₃
- 4. HCN
- 5. SO₂

21. How many single and double bonds are in the correct Lewis structure methanol (CH₃OH)?

- 1. 5 single bonds and 0 double bonds.
- 2. 3 single bonds and 1 double bond.
- 3. 4 single bonds and 1 double bond.
- 4. 6 single bonds and 0 double bonds.
- 5. 5 single bonds and 1 double bond.

22. Based on their Lewis structures, which of the following atoms would be considered radicals?

- I. C
- II. N
- III. O
- IV. F
- 1. II and IV
- 2. I and III
- 3. I, II and III
- 4. II, III and IV
- 5. II and III
- 6. I and IV

23. Which group on the periodic table contains at least one element likely to form stable covalent compounds that have fewer than 8 valence electrons on their central atom?

- 1. Group 4
- 2. Group 7
- 3. Group 6
- 4. Group 3
- 5. Group 5

24. How many double bonds area found in the Lewis structure of ethanoic acid (CH₃COOH)?

- 1.6
- 2.0
- 3.2
- 4.5
- 5.1

25. Which of the following electronic geometries is reserved for hypervalent compounds?

- 1. linear
- 2. trigonal planar
- 3. trigonal bipyramidal
- 4. tetrahedral
- 5. dodecahedral
- 26. What would be the electronic geometry of Br_3 ?
 - 1. trigonal bipyramidal
 - 2. square pyramidal
 - 3. octahedral
 - 4. tetrahedral
 - 5. icosohedral

27. What is the formal charge on the Xenon atom (Xe) in XeF_2 ?

- 1. -2
- 2.2
- 3.0
- 4.6
- 5. -4

28. Based on formal charge considerations, which of the following is a better Lewis structure for sulfur dioxide (SO_2) ?

I. .. II. .. S S // \ // \\ :O: :O: :O: :O: :O:

1. Structure 2 is better based on formal charge considerations.

2. Structure 1 is better based on formal charge considerations.

3. Both structure are equivalent based on formal charge considerations.

4. Neither structure is a correct Lewis structure for SO_2 .

29. Rank the following diatomic molecules in terms of decreasing electronegativity difference (Δ EN): HI, HF, HBr, HCl,

- 1. HI < HF < HCl < HBr
- 2. HI < HBr < HCl < HF
- 3. HCl < HBr < HI < HF
- 4. HF < HCl < HBr < HI
- 5. all have the same electronegativity difference.

30. Which of the bonds below is not correctly paired with its electronegativity difference (ΔEN)?

- 1. C-H; 0.3
- 2. B-F ; 2.5
- 3. C-O; 0.5
- 4. N-N ; 0
- 5. Si-Si ; 0