Week 10 Worksheet: Chapter 11 Redox Reactions

I. Acid-base solution/ Normality

(a) What volume of 1.00 M LiOH would be required to completely neutralize 75 mL of $1.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
(b) Calculate the normality for a solution with 255 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in 3000 mL .
(c) What volume of 5 M sulfuric acid is required to prepare 850 mL of $0.75 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$?
(d) What is the normality of an NaOH solution if 25.7 mL of it react with 0.587 g of $\mathrm{H}_{2} \mathrm{CrO}_{4}$?

II. Oxidation-Reduction Reactions

Balance each reaction. For each equation, tell what is being oxidized and what is being reduced. For the last two reactions to be balanced correctly, you must add $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{O}$, or OH^{-}.
(a) \qquad $-\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow$ \qquad $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+$ \qquad
(b) \qquad $\mathrm{MnO}_{4}{ }^{-}+$ \qquad $\mathrm{Br}^{-}+$ \qquad $\mathrm{H}^{+} \rightarrow$ \qquad $\mathrm{Mn}^{2+}+$ \qquad $\mathrm{Br}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
(c) $\ldots_{[} \mathrm{Cr}_{2} \mathrm{O}_{7}^{-}+\ldots \mathrm{Fe}^{2+}+\ldots \mathrm{H}^{+} \rightarrow \ldots \mathrm{Cr}^{3+}+\ldots \mathrm{Fe}^{3+}+\ldots \mathrm{H}_{2} \mathrm{O}$
(d) ___ $\mathrm{Ba}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow __{-} \mathrm{Ba}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{2}$

III. Stoiciometry

(a) Calculate the normality of an HCl solution if 38.1 mL of the solution reacts with $0.438 \mathrm{~g} \mathrm{of}_{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$.

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

(b) What volume of 0.30 N NaOH is required to neutralize 100 mL of $0.57 \mathrm{~N} \mathrm{HNO}_{3}$?

