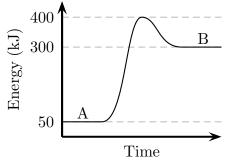
This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

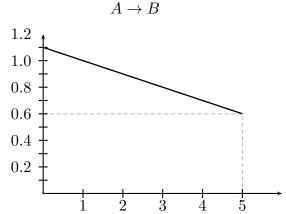
001 10.0 points


What would you propose as the rate law for the reaction of bromine with nitric oxide if the second step of a proposed mechanism is the rate determining step?

Step 1: NO + $Br_2 \rightarrow NOBr_2$ Step 2: NOBr₂ + NO $\rightarrow 2 NOBr$

- **1.** $k [NO]^2 [Br_2] [NOBr_2]^{-1}$
- **2.** k [NO] [Br₂] [NOBr₂]⁻¹
- **3.** $k [NO]^2$
- **4.** k [NO] [Br₂] [NOBr₂]
- **5.** $k [NO]^2 [Br_2]$

002 10.0 points


The graph describes the energy profile of a reaction.

What are the values for ΔH and E_a , respectively, for the reaction in the direction written?

- 1. -250 kJ, -100 kJ
- **2.** -250 kJ, 100 kJ
- **3.** 250 kJ, 350 kJ
- 4. -250 kJ, 350 kJ
- 5. 250 kJ, 100 kJ

 $\begin{array}{ccc} 003 \quad 10.0 \text{ points} \\ \text{The graph is a plot of } \ln A \ vs \ t \ \text{for the reaction} \\ \end{array}$

rate = k [A] is the rate law for this reaction. What was the initial concentration of [A]?

1. 1.8 N	Л
2. 3.0 N	Л
3. 5 M	
4. 0.6 N	Л
5. 1.1 N	Л

004 10.0 points

Which of the following statements regarding collision and transition state theory are true?

- I) Reactants must collide to form products.
- II) Activation energy is always positive.
- III) Reactant molecules must absorb energy to form the transition state.
- IV) Reactant collisions must be oriented properly to form products.
- **1.** II and III only
- 2. I, III, and IV only
- 3. I, II, III, and IV
- 4. I and IV only
- 5. II, III, and IV only

005 10.0 points In the reaction

$$3 \text{ Mg(s)} + 2 \text{ Fe}^{2+}(\text{aq}) \rightarrow 2 \text{ Fe(s)} + 3 \text{ Mg}^{2+}(\text{aq}),$$

$$\frac{\Delta [\text{Fe}]}{\Delta t} = 2.4 \times 10^{-4} \text{ M/s}. \text{ What is } \frac{\Delta [\text{Mg}]}{\Delta t}?$$

$$1. -3.6 \times 10^{-4} \text{ M/s}$$

$$2. -1.6 \times 10^{-4} \text{ M/s}$$

$$3. +3.6 \times 10^{-4} \text{ M/s}$$

$$4. +1.6 \times 10^{-4} \text{ M/s}$$

$$5. +1.2 \times 10^{-4} \text{ M/s}$$

006 10.0 points

A reaction has a rate constant of $k = 5.5 \times 10^{-4} \text{ M}^2 \text{s}^{-1}$. What is the reaction order?

1. −2
 2. 0
 3. 1
 4. 2
 5. −1

007 10.0 points What is the rate law for the reaction

$A + B + C \rightarrow D$

if the following data were collected?

Exp	$[A]_{0}$	$[B]_{0}$	$[C]_{0}$	Initial Rate
1	0.4	1.2	0.7	2.32×10^{-3}
2	1.3	1.2	0.9	7.54×10^{-3}
3	0.4	4.1	0.8	9.25×10^{-2}
4	1.3	1.2	0.2	7.54×10^{-3}

1. rate = $3.36 \times 10^{-3} [A]^{1} [B]^{3} [C]^{0}$ 2. rate = $1.79 \times 10^{-3} [A]^{0} [B]^{2} [C]^{1}$ 3. rate = $1.49 \times 10^{-3} [A]^{0} [B]^{3} [C]^{1}$ 4. rate = $4.48 \times 10^{-3} [A]^{1} [B]^{2} [C]^{1}$ **5.** rate = $5.37 \times 10^{-3} \, [A]^1 \, [B]^3 \, [C]^0$

008 10.0 points

The decomposition of hydrogen peroxide to form water is a first order process. If it takes 20 minutes for the initial concentration to fall from 1.6 M to 0.8 M, how much time has passed when only 0.05 M of the initial 1.6 M remains?

1. 100 minutes

2. 120 minutes

3. 80 minutes

4. 160 minutes

5. 40 minutes

009 10.0 points

At 0° C and 1 atmosphere of pressure, which of the following gases would have the lowest average molecular speed?

1. H₂

2. NH_3

3. N₂

4. CO₂

5. Ar

010 10.0 points

What is the molecular weight of a (hypothetical) gas that diffuses 1.414 times faster than nitrogen (N_2) ?

- **1.** 23.5 g/mol
- **2.** 32.6 g/mol
- **3.** 14.0 g/mol
- **4.** 46.6 g/mol

5.4.85 g/mol

011 10.0 points

Given the gases Cl₂, Kr, CO₂, Ne, put them in order of their INCREASING rate of effusion.

- $1. \operatorname{CO}_2 < \operatorname{Ne} < \operatorname{Kr} < \operatorname{Cl}_2$
- **2.** Kr < Cl₂ < CO₂ < Ne
- **3.** $Cl_2 < Kr < Ne < CO_2$
- **4.** Ne < CO₂ < Cl₂ < Kr

012 10.0 points

In an improved version of the gas law, P is replaced by $\left(P + \frac{n^2 a}{V^2}\right)$. In this expression, the second term, $\frac{n^2 a}{V^2}$, accounts for

1. the forces of repulsion between molecules.

2. the excluded volume of the molecules.

3. the forces of attraction between molecules.

- 4. the size of the molecules.
- 5. the size of the container.

013 10.0 points

Under which of the following conditions is a real gas most likely to deviate from ideal behavior?

- 1. Tuesdays and Thursdays
- **2.** zero pressure
- **3.** if it is a noble gas
- 4. high volume
- 5. low pressure

6. low temperature

7. new moon

8. low density

014 10.0 points

If 250 mL of a gas at STP weighs 2 g, what is the molar mass of the gas?

1. 8.00 g \cdot mol⁻¹

2. 44.8 g \cdot mol⁻¹

3. 56.0 g \cdot mol⁻¹

4. 28.0 g \cdot mol⁻¹

5. $179 \text{ g} \cdot \text{mol}^{-1}$

015 10.0 points

At constant temperature, the rate of effusion of H_2 is

- 1. None of these
- **2.** one-fourth that of oxygen gas.
- **3.** twice that of helium gas.
- 4. four times that of oxygen gas.

5. one-half that of helium gas.

016 10.0 points

Which of the following molecules would have the smallest a and b term, respectively, in the van der Waals' equation: O_3 , CHF₃, SF₅Cl, SiHCl₃, Xe.

- **1.** Xe and SF_5Cl , respectively
- **2.** Xe and O_3 , respectively
- **3.** CHF₃ and CHF₃, respectively
- 4. Xe and Xe, respectively

5. SiHCl₃ and O₃, respectively

017 10.0 points

If a 10 L gaseous system at 400 K and 4 atm is heated to 800 K and allowed to expand to 20 L, what will the new pressure of the system be?

1. 2 atm

2. 16 atm

3. 4 atm

4. 1 atm

5. 8 atm

018 10.0 points

A sample of gas occupies 10.5 L at 600 torr and 50°C. What volume will it occupy at STP?

1. 7.01 L

2. 9.81 L

3. 11.2 L

4. 15.7 L

019 10.0 points

If the temperature of an ideal gas is raised from 100° C to 200° C, while the pressure remains constant, the volume

1. increases by a factor of 100.

2. None of these

3. remains the same.

4. doubles.

5. goes to $\frac{1}{2}$ of the original volume.

1. 22.4 liters.

2. 12.4 gallons.

3. 6.02×10^{23} liters.

4. 12.4 liters.