This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

## 001 10.0 points

Which of the following is not true about the catalyst responsible for the hole in the ozone layer?

**1.** Sunlight facilitates the formation of the catalyst.

**2.** The catalyst's source is often a chlorofluorocarbon.

**3.** It is a heterogeneous catalyst.

**4.** It is a free radical.

**5.** Ozone is converted to  $O_2$  in the catalyzed reaction.

## 002 10.0 points

Which of the following can increase the rate of reaction by increasing the rate constant k?

- I. raising the temperature
- II. decreasing the volume
- III. adding a catalyst
- IV. increasing the concentration

1. II only

- **2.** I only
- 3. I, II, and III only
- 4. III and IV only

5. I and III only

**003 10.0 points** If  $k = 2.7 \times 10^{-6} \text{ M}^{-1} \text{s}^{-1}$  for the reaction

#### $\mathbf{A} \to \mathbf{B}$

which of the following is the correct rate law?

**1.** rate =  $k [A]^0 [B]^{-1}$ 

2. rate =  $k [A]^0$ 3. rate =  $k [A]^2$ 4. rate =  $k [A]^2 [B]^{-1}$ 5. rate =  $k [A]^1$ 

# 004 10.0 points

Calculate the density of camphor  $(C_{10}H_{16}O)$  at 80°C and 12 Torr.

**1.** 0.083 g · L<sup>-1</sup> **2.**  $6.8 \times 10^{-3}$  g · L<sup>-1</sup> **3.** 0.37 g · L<sup>-1</sup> **4.** 0.62 g · L<sup>-1</sup> **5.**  $8.2 \times 10^{-4}$  g · L<sup>-1</sup>

#### 005 10.0 points

Lithium metal reacts with nitrogen gas to produce lithium nitride. What volume of nitrogen gas at 2 atm and 175°C is required to produce 75.0 g of lithium nitride?

| 1. | $39.6 \mathrm{L}$  |
|----|--------------------|
| 2. | 79.2 L             |
| 3. | $19.8 \mathrm{~L}$ |
| 4. | 119 L              |
| 5. | $7.73~\mathrm{L}$  |

## 006 10.0 points

Calculate the ratio of the rate of effusion of  $CO_2$  to that of He (at the same temperatures).

**1.** 1 : 11 **2.** 1 :  $11^2$  **3.**  $\sqrt{11}$  : 1 **4.**  $11^2$  : 1 **5.** 1 : 1

**6.** 11 : 1

**7.** 1 :  $\sqrt{11}$ 

## 007 10.0 points

Rank the gases  $H_2$ ,  $CH_3F$ ,  $N_2$ ,  $CF_4$ , HF from left to right in terms of the increased non-ideality that results from a reduction in the effective pressure of the gas due to intermolecular forces.

1.  $H_2$ ,  $N_2$ ,  $CF_4$ ,  $CH_3F$ , HF

**2.**  $CF_4$ ,  $CH_3F$ ,  $N_2$ , HF,  $H_2$ 

**3.**  $H_2$ ,  $N_2$ , HF,  $CH_3F$ ,  $CF_4$ 

4.  $H_2$ ,  $CH_3F$ ,  $N_2$ ,  $CF_4$ , HF

**5.**  $H_2$ , HF,  $N_2$ ,  $CH_3F$ ,  $CF_4$ 

**6.** HF,  $CH_3F$ ,  $CF_4$ ,  $N_2$ ,  $H_2$ 

#### 008 10.0 points

The molar volume of a gas at STP is

**1.** 22.4 liters.

2. 12.4 gallons.

**3.** 12.4 liters.

**4.**  $6.02 \times 10^{23}$  liters.

#### 009 10.0 points

All of the following statements, except one, are important postulates of the kineticmolecular theory of ideal gases. Which one is not a part of this kinetic molecular theory?

**1.** The average kinetic energy of the molecules is inversely proportional to the absolute temperature.

2. The time during which a collision between two molecules occurs is negligibly short compared to the time between collisions.

**3.** There are no attractive nor repulsive forces between the individual molecules.

4. The volume of the molecules of a gas is very small compared to the total volume in which the gas is contained.

**5.** Gases consist of large numbers of particles in rapid random motion.

## 010 10.0 points

Which of the following statements is true about the speeds of molecules in a gas sample?

**1.** As the temperature is raised the fraction of molecules with high speeds decreases.

**2.** As the temperature is raised the fraction of molecules with high speeds increases.

**3.** The fraction of molecules having very low speeds is high.

**4.** As the temperature is raised the fraction of molecules with low speeds increases.

5. As the temperature is raised the fraction of molecules with a given speed remains unchanged.

#### 011 10.0 points

In an improved version of the gas law, V is replaced by (V - n b). Which of the following would you predict has the largest b?

**1.** He

**2.** Ar

**3.** Kr

**4.** Xe

**5.** Ne

012 10.0 points If we increase the volume of a gaseous system

by a factor of 3 and raise the temperature by a factor of 6, then the pressure of the system will (increase/decrease) by a factor of (2/18):

- 1. increase, 2
- **2.** increase, 18
- **3.** decrease, 2
- **4.** decrease, 18

## 013 10.0 points

Which of the following statements is/are true?

- I) At a given temperature, larger molecules have greater average kinetic energy than smaller molecules.
- II) As the temperature of a gaseous system rises, the gas molecules' average speed increases.
- III) Gas molecules have an average rate of diffusion that is lower than their average velocity.

1. I, II

- **2.** I only
- **3.** II, III
- **4.** I, II, III
- 5. II only
- 6. I, III
- 7. III only

#### 014 10.0 points

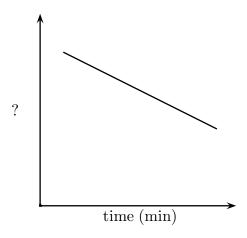
Consider the data below:

|                        | [NO]      | $[CO_2]$  | initial rate               |
|------------------------|-----------|-----------|----------------------------|
|                        | Μ         | Μ         | ${ m M} \cdot { m s}^{-1}$ |
| Exp 1                  | 0.4       | 1.2       | $2.178 \times 10^{-1}$     |
| $\operatorname{Exp} 2$ | 0.8       | 2.4       | $8.572 \times 10^{-1}$     |
| $\operatorname{Exp} 3$ | 0.4       | 0.6       | $2.178 \times 10^{-1}$     |
| Which of               | f the fol | lowing ig | a correct rate le          |

Which of the following is a correct rate law for the reaction?

**1.**  $k \cdot [CO_2]^2 [NO]^{-1}$  **2.**  $k \cdot [CO_2]^2$  **3.**  $k \cdot [NO]^2$  **4.**  $k \cdot [NO]$ **5.**  $k \cdot [NO] \cdot [CO_2]$ 

### 015 10.0 points


A non-steroidal anti-inflammatory drug is metabolized with a first-order rate constant of  $3.25 \text{ day}^{-1}$ . What is the half-life for the metabolism reaction?

**1.** 1.63 day

- **2.** 2.25 day
- **3.** 0.213 day
- 4. 0.308 day

#### 016 10.0 points

If the plot below were for a  $1^{st}$  order reaction, what units belong on the y-axis?



1. Not enough information

**2.** [A] (M)

4.  $\frac{1}{[A]} (M^{-1})$ 

#### 017 10.0 points

In collision theory, temperature most impacts which of the following terms?

**1.** collision frequency

**2.** steric requirements

**3.** Collision theory has nothing to do with temperature.

4. activation energy

## 018 10.0 points

Consider the reaction mechanism below:

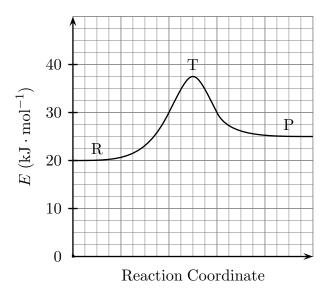
| Step    | Reaction                                                                    |
|---------|-----------------------------------------------------------------------------|
| 1       | $C_2H_4 + BrF \longrightarrow C_2H_4F + Br$                                 |
| 2       | $C_2H_4F + BrF \longrightarrow C_2H_4F_2 + Br$                              |
| 3       | $\operatorname{Br} + \operatorname{Br} \longrightarrow \operatorname{Br}_2$ |
| overall | $C_2H_4 + 2 \operatorname{BrF} \longrightarrow C_2H_4F_2 + Br_2$            |

What is the rate law if step 2 is the ratedetermining step?

**1.** rate = 
$$k \cdot [C_2H_4] \cdot [BrF]^2$$
  
**2.** rate =  $k \cdot [C_2H_4] \cdot [BrF]^2 \cdot [C_2H_4F_2]^{-1}$   
**3.** rate =  $k \cdot [C_2H_4] \cdot [BrF]$   
**4.** rate =  $k \cdot [C_2H_4] \cdot [BrF]^2 \cdot [Br]^{-1}$   
**5.** rate =  $k \cdot [C_2H_4] \cdot [BrF] \cdot [Br]^{-1}$ 

## 019 10.0 points

Consider the reaction mechanism below:


| Step    | Reaction                                 |
|---------|------------------------------------------|
| 1       | $Cl_2 + Pt \longrightarrow 2 Cl + Pt$    |
| 2       | $Cl + CO + Pt \longrightarrow ClCO + Pt$ |
| 3       | $Cl + ClCO \longrightarrow Cl_2CO$       |
| overall | $Cl_2 + CO \longrightarrow Cl_2CO$       |

Which species is/are intermediates?

| 1. | $\operatorname{Pt}$ |
|----|---------------------|
| 2. | Cl, ClCO            |
| 3. | Pt, ClCO            |
| 4. | Cl                  |
| 5. | Pt, Cl              |
| 6. | ClCO                |

# 020 10.0 points What is the activation energy for the forward

reaction in the diagram below?



- **1.** 17.5 kJ  $\cdot$  mol<sup>-1</sup>
- **2.** 5.0 kJ  $\cdot$  mol<sup>-1</sup>
- **3.** 20.0 kJ  $\cdot$  mol<sup>-1</sup>
- **4.**  $12.5 \text{ kJ} \cdot \text{mol}^{-1}$
- **5.**  $25.0 \text{ kJ} \cdot \text{mol}^{-1}$
- **6.**  $37.5 \text{ kJ} \cdot \text{mol}^{-1}$