Laude's CH301 Worksheet 7: VB and MO

1. Use valence-bond theory to predict the hybridization and other properties of these compounds

Cmpd	Lewis structure	Hybridization of central atom	$\#$ of σ bonds	\# of π bonds	Atomic orbits that form the σ and π bonds: Example: $\sigma_{\text {sp2-1s }}$
CH_{4}					
$\mathrm{~N}_{2}$					
CO_{2}					
NH_{3}					
$\mathrm{C}_{2} \mathrm{H}_{2}$					
SF_{6}					
NH_{2}					

2. Build these compound using molecular orbital theory and predict

O_{2}	O $2 p^{3}---------$ $2 s^{2}---$		O $2 p^{3}--------$ $2 s^{2}---$		
$\mathrm{O}_{2}{ }^{2-}$	$2 p^{3}-------$ $2 \mathrm{~s}^{2}---$		O $2 p^{3}-------$ $2 \mathrm{~s}^{2}---$		
F_{2}	F $2 p^{3}--------$ $2 s^{2}---$		\bar{F} $2 p^{3}--------$ $2 \mathrm{~s}^{2}---$		
CN^{-}	C $2 p^{3}--------$		$\mathrm{N}-$ $2 p^{3}--------$		

3. Rank the bond energy and bond length for the 6 compounds in problem 2 based on bond order. Increasing bond length:

Increasing bond energy:

