
LECTURE 3.  THE ORIGIN OF THE ATOMIC ORBITAL:  WHERE THE ELECTRONS ARE 
 
In one sentence I will tell you the most important idea in this lecture: 
 

Wave equation solutions generate atomic orbitals that define the electron distribution around an atom. 
 
To start we need to simplify the math by switching to spherical polar coordinates (everything = spherical) rather than 
Cartesian coordinates (everything = at right angles). So the wave equations generated will now be of the form ψ(r, θ, Φ) = 
R(r)Y(θ, Φ) where R(r) describes how far out on a radial trajectory from the nucleus you are. 

      r is a little way out and is small    
 
Now that we are extended radially on ψ, we need to ask where we are on the sphere carved out by R(r). Think of blowing up a 
balloon and asking what is going on at the surface of each new R(r).  To cover the entire surface at projection R(r), we need 
two angles θ, Φ that  get us around the sphere in a manner similar to knowing the latitude & longitude on the earth. 
  

   These two angles yield  Y(θ, Φ) which is the angular wave function 



A first solution:  generating the 1s orbit 
 
So what answers did Schrodinger get for ψ(r, θ, Φ)? It depended on the four quantum numbers that bounded the system n, l, ml 
and ms. So when n = 1 and = the solution he calculated was:  
 

R(r) = 2(Z/a0)1/2*e-Zr/a0  and Y(θ, Φ) = (1/4π)1/2.  
 
This combination is the wave function for a ground state electron in a 1s hydrogen orbit and has the famous spherical shape 
that was described in the Bohr atom and in elementary school Styrofoam models across the world. 
 

                                                                            
 
 

Angular Momentum Happens 
 
Things get a lot more complicated for ψ mathematically, at even the next principal energy level, n=2.  This is shown in the 
table below.  Specifically note that while = 0, there was no θ or Φ component, when = 1, there is a sinθcosΦ  term. Y(θ, 
Φ) describes the angular momentum of an electron. When = 0  there is no angular momentum (no dependence of θ, Φ) and 
we have a simple blob-like distribution of aimless electrons. But for = 1 and higher, θ and  Φ define an angular momentum 
that is the acceleration of electrons around a p, d, or f orbit.    



 
 



ψ2 is what we’re after. 
 
While it’s great to have a table of wave functions, ψ, what we are really after is  ψ2(r, θ, Φ) which tells us the probability of 
finding an electron in a small volume, ΔV, defined by r, θ, Φ. For example, ψ2(r, θ, Φ) for n=2, = 1 generates the famous p 
orbital shape that has a nodal plane at the nucleus. 

                                                                                      
ψ2 tells us the density of e– probability for any volume we carve how around the nucleus. Simply stick in ψ2(r, θ, Φ) and it tells 
you the probability of e– at each of those volumes.  Thus for example, for the quantum numbers that describe the dumbbell 
shape above, most of the electron density lies along the z axis. 
 

Azimuthal quantum number, , describes the shape. 
 
The azimuthal quantum number, ℓ, tell us  the shape of orbits with the boundaries,   ℓ=0,1,2,…,n-1  If we calculate ψ2 for 
various values of , the orbital angular momentum, you end up with shapes like: 
 

                               

 
Note that any time you have  = 0, you get something that 
looks spherical (though is you look closely it isn’t that 
simple.) and is labeled as an “s orbital.”  If you have  = 1, 
you create a shape that looks like a dumbbell and is labeled 
as a “p orbital.”  For  = 2, you create a shape that often 
looks like two overlapping dumbbells, and is labeled as a “d 
orbital.”  These are the famous shapes that we will draw 
over and over again to represent “where the electrons are” 
around a nucleus. 



 
A Third Quantum Number, ml, Describes the Direction or Orientation of the Orbital 

 
Falling out of the wave equations for ψ(r, θ, Φ) is another quantum number defining the direction or orientation of wave 
function. The number of directions is determined from the boundary condition. 
 

 = 0, 1,…. yielding  from – ,…,0,…,+   so when 
 

 = 0   there is one orientation   (because a sphere looks the same from every direction.) 
 = 1   there are three orientations   –1, 0, 1 
 = 2   there are five orientations     –2, –1, 0, 1, 2 

 
The directions usually are not easy to define given the unfamiliarity of spherical polar coordinates. But fortunately we can 
easily identify the 3 directions of p orbits for  = 1 in Cartesian system 

    
As you look at the d orientations for the d orbits it is apparent that a lot more is going on that you will be taught in this course. 

                                     
 



A Fourth Quantum Number, ms, Defines the Spin of the Electron 
 
The mS quantum number for an electron describes the direction of spin of an electron.  The really good news is that there are 
only two ways an electron can spin:  up and down.  They are assigned the values of plus and minus ½, but we don’t need to be 
concerned with that value.  Just the fact that there are two directions.  We can show off these two directions using a 
cheerleader who does head stands and spins while I stay upright and spin--or we can do it with an electron. 

                            
 
 
 

Creating Orbital Shorthand to Define the Possible ms conditions 
 
This last quantum number is actually the one that gets depicted most often as we start to build up our electron configurations.  
Rather than the pretty pictures above, we simply draw a line which represents an orbital   An “orbital” is what you get when 
you combine a value for n and a value for  to produce orbitals like  1s  or 3p  or 4d.  The  boundary conditions established 
by the ms quantum number are that you can only have two possible electron spins, up and down.  So putting these ideas 
together we end up having just three possible allowed states for an orbital:  empty, half filled, and filled, as depicted below. 
 

 
______   ______   ______ 



Putting it all together—the boundary conditions that define the appearance of the periodic table 
 
The end result of Scrodinger’s solution to the wave equations for a multi-electron system surrounding a positive nucleus is the 
set of four boundary conditions in the table below.  It is these allowed combinations of these quantum numbers that determine 
the distribution of electron density around atoms and consequently the basis for chemical bonding that define matter in the 
universe.  Learn to apply these boundary conditions and then compare them to what you see in the periodic table.  They are 
the same.  Wow.  Summarizing: 
 
 

 



Radial Distribution Function. 
 
One final idea before we leave quantum mechanics and start building electronic configurations.  There is a different way for 
expressing electron density without having to draw the complicated three-dimensional pictures using  ψ2 which is a probability 
of e– in a small volume of space.  Instead, why not consider P(r) which is a radial distribution along a single axis.. 
 

P(r) ≡ radial distribution ≡ probability of finding an e– at any location on the sphere carved out along r 
 
As an example, P(r) just for fun, starting at the center of the earth (assuming there is a hell with people in it), let’s draw P(r) 
for number of people as we extend outward radially into space.  Here is a crude drawing of what it would look like. 
 

                                            
Why are P(r) distributions valuable?  Well  we all think s orbits are pretty spheres but actually the radial distributions indicate 
layers of electron density within the larger s orbits. 



                                                       
By looking at the radial distribution for the s orbits we can uncover that there are a lot of complexities we might not have seen 
otherwise.  For example, the larger s orbits are not single uniforms spheres but actually have waves of increased spherical 
density extending out from the nucleus. 
. 
 


