LECTURE 12. VB THEORY: MAKING MOS FROM AOS

What is a bond? An overlap of e- density from 2 atomic orbits.

Examples of atomic orbits?

So what are the types of molecular orbits? There are only 2, sigma and pi.

Note that since s orbit is in all directions, some overlap must be along axis of nuclei, so s orbits are always sigma bonds.Now look at 3 orientations of p atomic orbits:

Summarizing:

- any bond involving s orbits is sigma
- $s + s = sigma, \sigma; s + p = sigma, \sigma$
- of 3 p orbits overlapping, 2 will be pi, π and one will be sigma, σ
- And that is almost it. Except that we need to consider the case where hybrid atomic orbits: sp, sp2, sp3, dsp3, d2sp3 are mixed. Note, happily, that every hybrid orbit has s character which means that they have some electron density along the axis and consequently:

Every hybrid orbit that forms a valence bond with another atomic orbit is making a sigma, σ , bond.

Let's apply to 3 examples: C₂H₂, C₂H₄, C₂H₆.

- sigma: bonds along the axis between atoms. It is the first bond formed and is from either atomic orbits with s character or p orbits, or hybrid orbits. Example:

- pi: bond above and below nuclei axis; are formed by off-axis overlap of p-p orbits. π bonding is always present when there are 1) double bonds 2) triple bonds 3) resonance. Example:

Now let's identify sigma and pi bonds in C_2H_6 , C_2H_4 , and C_2H_2 .

Example C₂H₆:

- note that there are 7 sigma bonds. 6 are C-H and 1 is C-C.
- C-H bond is H 1s overlap with Csp3 orbit $\rightarrow \sigma_{1s-sp3}$
- C-C bond is C sp3 overlap with Csp3 $\rightarrow \sigma_{sp3-sp3}$

- first bond type is seen 4 times: C-H $\rightarrow \sigma_{sp2-1s}$
- second bond type is seen 1 time: C-C $\rightarrow \sigma_{sp2-sp2}$
- third bond type is pi bond seen once: C-C $\rightarrow \pi_{p-p}$

Example C₂H₂:

- 2 sigma C-H bonds $\rightarrow \sigma_{1s-2p}$ from H and C
- 1 sigma C-C is $\rightarrow \sigma_{sp-sp}$ from C and C
- 2 pi C-C is C-C $\rightarrow \pi_{p-p}$ from over lap of p orbits above and below, from and back

The bad news is that VB (valence bond) theory is needed to explain hybrids. The good news is that all hybrid orbits look pretty much the same.

The reason they look the same is that all have s orbit in the mix (sp, sp2, sp3, dsp3, d2sp3). And the best news is that therefore all hybrids for sigma bonds.

So while we haven't learned why hybrids are needed, at least we know that they must form sigma bonds.

Now let's see why Valence Bond (VB) Theory explains hybrids.

Imagine what CH4 molecular orbits came from:

This means that we should have 4 bonds as shown to the right. They appear to be of two different types: sigma 1s-2s and sigma 1s-2p.

But the single σ $_{1s\text{-}2s}$ is different from: the three σ $_{1s\text{-}2p}$

So spectroscopy should show 2 peaks, right?

- so the 4 bonds must be the same. They must have mixed or hybridized orbitals

- The 4 sp³ hybrids combine to form the one peak shown on the left.

# e- rich regions	Atomic orbits before mixing	Mixed Hybrid
2	s,p	\mathbf{Q}
3	s,p,p	000 \$1° \$1° \$1°
4	s,p,p,p	$ \bigcup_{s_{p}} \bigcup_{$
5	d,s,p,p	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
6	d,d,s,p,p	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

So how many kinds of hybrids? They break down by # e- rich regions = # hybrid orbits

Example: What is hybridization of BeCl2?

Create Lewis structure \rightarrow Cl-Be-Cl 2 e- rich regions so hybrid of two atomic orbits = sp hybrid

6 e- rich regions means hybrid of six atomic orbits = d2sp3 hybrid

Example: What is hybridization for SF6 ?

Summarizing what you know: the 13 molecular shapes

Summarizing what you know:

	-	T			
# e-	rich	Electronic	Angle	Hybrid	Molecular
regions		geometry			geometry
2		Linear	180	Sp	AB2
3		Trigonal	120	Sp2	AB2 or AB3
		planar			
4		Tetrahedral	109.5	Sp3	AB4, AB3U,
					AB3U2
5		Trigonal	120, 90, 180	Dsp3	AB5, AB4U,
		bipyramidal			AB3U2
6		Octahedral	180, 90	D2sp3	AB6, AB5U,
					AB4U2
What starts it all, from 3D Lewis structure 3 things you know right away from # e- rich regions					Knowing bonding and unbonded pai lets you determine

irs lets you determine molecular geometry