- 1. Which of the following is not one of the laws of thermodynamics?
 - 1. The entropy of a perfect crystal approaches zero as its temperature approaches zero.
 - 2. The internal energy of the universe is a constant
 - 3. The entropy of the universe is increased by all spontaneous processes.
 - 4. The universe is a closed system.
- 2. If a compound's formation reaction is _____, $\Delta G^o{}_f$ is _____ and the compound is
 - 1. exothermic, zero, unstable
 - 2. non-spontaneous, positive, stable
 - 3. spontaneous, negative, stable
 - 4. endothermic, negative, stable
 - 5. at equilibrium, positive, unstable
 - 6. spontaneous, zero, stable
 - 7. endothermic, positive, unstable
- 3. Which of the following will result in the greatest increase in entropy of the surroundings (ΔS_{surr})?
 - 1. $\Delta H_{SYS} = -2.68 \text{ kJ}$, $T_{surr} = 70 \text{ K}$
 - 2. $\Delta H_{sys} = -2,680 \text{ J}$, $T_{surr} = 556 \text{ K}$
 - 3. $\Delta H_{SYS} = 4.13 \text{ kJ}$, $T_{Surr} = 415 \text{ K}$
 - 4. $\Delta H_{sys} = 4,130 \text{ J}, T_{surr} = 23 \text{ K}$
- 4. The enthalpy of fusion (ΔH_{fus}) of tungsten is 35.23 kJ/mol, and its melting point is 3422 °C. What is the entropy of fusion (ΔS_{fus}) of tungsten?
 - 1. 130.17 J/(mol·K)
 - 2. 10.30 J/(mol·K)
 - 3. 10.30 kJ/(mol·K)
 - 4. 9.53 J/(mol·K)
 - 5. 4.76 J/(mol·K)
- 5. Given the enthalpies of formation and molar entropies ($\Delta H^o{}_f$ and $S^o{}_m$) in the following table, what is the Gibbs free energy change (ΔG) for the manufacture of metallic aluminum from alumina at 1300K?

	ΔH° _f (298 K)	S°m (298 K)
AI(I)	10.71 kJ·mol ⁻¹	39.77 J·mol ⁻¹ ·K ⁻¹
Al ₂ O ₃ (I)	-1675.7 kJ·mol ⁻¹	50.92 J·mol ⁻¹ ·K ⁻¹
Cgraphite(S)		5.7 J·mol ⁻¹ ·K ⁻¹
CO ₂ (g)	-393.51 kJ·mol ⁻¹	213.74 J·mol ⁻¹ ·K ⁻¹

- 2 Al₂O₃(I) + 3 C_{graphite}(s) \rightarrow 4 Al(I) + 3 CO₂(g) Δ G = ?
 - 1. -1,327.94 kJ·mol ̄
 - 2. 1,327.94 kJ·mol⁻¹
 - 3. 1036.94 kJ·mol⁻¹
 - 4. -1036.94 kJ·mol⁻¹
- 6. Your roommate left 1 kg of dry ice out on the counter last night and all of it sublimated. Given that $\Delta H = 393.5 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S = 2.023 \text{ kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ for dry ice sublimating and that the temperature in the room was 25 °C, by how much in total has has your roommate increased the entropy of the universe?
 - 1. -1.320 kJ·K⁻¹

- 2. 0 kJ·K⁻¹
 3. 0.703 kJ·K⁻¹
 4. 2.023 kJ·K⁻¹
 5. 15.97 kJ·K⁻¹
 6. 45.96 kJ·K⁻¹
 7. -39.99 kJ·K⁻¹