1. Assuming the apparatus itself absorbs no heat, what will be the final temperature of a bomb calorimeter's heat sink consisting of 100 mL of water at 15 °C if the reaction releases 6.276 kJ of heat?

1.30 K 2.303 °C 3. 30 °C 4.0 °C 5. -303 °C 6. 273 K 2. Calculate the change in enthalpy for the reaction below based on the provided data. $N_2H_4(I) + H_2(g) \rightarrow 2NH_3(g)$ $\Delta H = -201.1 \text{ kJ} \cdot \text{mol}$ $\Delta H = -91.8 \text{ kJ} \cdot \text{mol}^{-1}$ $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ $\Delta H = 85.2 \text{ kJ} \cdot \text{mol}^{-1}$ $CH_3OH(I) \rightarrow CH_2O(g) + H_2(g)$ $CH_2O(g) + N_2(g) + 3H_2(g) \rightarrow N_2H_4(I) + CH_3OH(I)$ $\Delta H = ?$ 1. ΔH = -28.4 kJ·mol 2. $\Delta H = -207.7 \text{ kJ} \cdot \text{mol}^{-1}$ 3. $\Delta H = 194.5 \text{ kJ} \cdot \text{mol}^{-1}$ 4. $\Delta H = -378.1 \text{ kJ} \text{ mol}^{-1}$ 5. $\Delta H = 24.1 \text{ KJ} \cdot \text{mol}^{-1}$

3. Calculation the work (w) for the following reaction conducted at 1000 °C: $SF_6(g) + O_3(g) \rightarrow SO_3(g) + 3 F_2(g)$

1. 21.2 kJ

- 2. -21.2 kJ
- 3. 16.6 kJ
- 4. -16.6 kJ

4. Consider the reaction below.

 $2 S_2O_2(g) + 4 F_2(g) \rightarrow 2 S_2(g) + 4 OF_2(g)$

Its change in entropy would likely be (positive/negative/either) and (large/small)

- 1. either, small
- 2. negative, small
- 3. positive, small
- 4. either, large
- 5. negative, large
- 6. positive, large

5. Which of the following reactions would spontaneous at some temperatures and nonspontaneous at other temperatures?

rxn	$\Delta S_{rxn}(J \cdot mol^{-1} \cdot K^{-1})$	ΔH _{rxn} (kJ·mol ⁻¹)
I	-25.20	2.45
II	1.15	879.23
III	13.93	-367.10
IV	-4.76	-98.04

1. I ans II

2. I and III

3. I and IV

4. II and III

5. II and IV

6. III and IV

6. What would be the total energy associated with the motion of a gaseous system composed of 1 mole each of CO₂, O₂ and O₃?

- 1. 12 RT
- 2.24 RT
- 3. 18RT
- 4. 9RT
- 5. 6RT
- 6.15RT