This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering. The due time is Central time.

Msci 090305

13:06, general, multiple choice, >1 min, fixed. 001
What is the bond order in C_{2}^{-}?

1. 1.0
2. 2.0
3. 2.5 correct
4. 3.0
5. 3.5

Explanation:

Bond order $=\frac{\# \text { elec }_{\text {bond }}-\# \text { elec }_{\text {antibond }}}{2}$.
The molecule C_{2}^{-}contains 9 bonding electrons and four antibonding electrons (include the net negative charge of the molecule). Applying these values to the bond order equation, we get a bond order of 2.5 .

Msci 090412

13:06, general, multiple choice, >1 min, fixed. 002
Molecular oxygen and molecular nitrogen are

1. both diamagnetic.
2. oxygen is paramagnetic, nitrogen is diamagnetic. correct
3. both paramagnetic.
4. oxygen is diamagnetic, nitrogen is paramagnetic.

Explanation:

The molecular orbital configurations are For O_{2} :

$$
\sigma_{1 s}{ }^{2} \sigma_{1 s}^{\star 2} \sigma_{2 s}{ }^{2} \sigma_{2 s}^{\star 2} \sigma_{2 p}{ }^{2} \pi_{2 p_{y}}{ }^{2} .
$$

For N_{2} :

$$
\sigma_{1 s}^{2} \sigma_{1 s}^{\star 2} \sigma_{2 s}^{2} \sigma_{2 s}^{\star 2} \pi_{2 p_{y}}^{2} \pi_{2 p_{z}}^{2} \sigma_{2 p}^{2}
$$

ChemPrin3e T03 58

13:10, general, multiple choice, <1 min, fixed. 003
Which of the following would have the longest bond?

1. B_{2} correct

2. C_{2}
3. N_{2}
4. C_{2}^{2-}
5. N_{2}^{2-}

Explanation:

In B_{2}, the bond order is 1 . All others are higher.

Mlib 031161

13:09, general, multiple choice, >1 min, fixed. 004
Which of the following species possesses a delocalized bond?

1. $\mathrm{H}_{2} \mathrm{~S}$
2. NO_{3}^{-}correct
3. $\mathrm{H}_{2} \mathrm{O}$
4. NCl_{3}
5. No molecule given here possesses a delocalized bond.

Explanation:

Only for NO_{3}^{-}can resonance structures be drawn.

ChemPrin3e T04 39

14:08, general, multiple choice, $<1 \mathrm{~min}$, fixed. 005
Ammonium nitrate can decompose according to the equation

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How much GAS is produced by decomposition of 160 g of ammonium nitrate at STP?

1. 44.8 L
2. 6.00 L
3. 22.4 L

4. 134 L correct

5. 67.2 L

Explanation:

$m_{\mathrm{NH}_{4} \mathrm{NO}_{3}}=160 \mathrm{~g} \mathrm{NH} 4 \mathrm{NO}_{3} \quad P=1 \mathrm{~atm}$ $T=0^{\circ} \mathrm{C}+273.15=273.15 \mathrm{~K}$

For the $\mathrm{NH}_{4} \mathrm{NO}_{3}$,

$$
\begin{aligned}
n_{\mathrm{NH}_{4} \mathrm{NO}_{3}}= & \left(160 \mathrm{~g} \mathrm{NH} \mathrm{NH}_{4} \mathrm{NO}_{3}\right) \\
& \times \frac{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.0434 \mathrm{~g} \mathrm{NH}}{ }_{4} \mathrm{NO}_{3} \\
= & 1.99892 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

The question asks for the number of moles of GAS; i.e., mol of $\mathrm{N}_{2} \mathrm{O}$ AND $\mathrm{H}_{2} \mathrm{O}$:

$$
\begin{aligned}
n & =\left(1.99892 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}\right) \frac{3 \mathrm{~mol} \mathrm{gas}}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}} \\
& =5.99675 \mathrm{~mol} \text { gas }
\end{aligned}
$$

The ideal gas law is

$$
\begin{aligned}
P V= & n R T \\
V= & \frac{n R T}{P} \\
= & \frac{(5.99675 \mathrm{~mol} \mathrm{gas})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}{1 \mathrm{~atm}} \\
& \times(273.15 \mathrm{~K}) \\
= & 134.415 \mathrm{~L} \text { gas }
\end{aligned}
$$

ChemPrin3e T04 60

14:10, basic, multiple choice, $<1 \mathrm{~min}$, fixed.

006

Which of the following gases will have the largest root mean square speed at $100^{\circ} \mathrm{C}$?

> 1. water
2. argon
3. methane correct
4. nitrogen
5. oxygen

Explanation:

Mlib 041011

14:04, general, multiple choice, $>1 \mathrm{~min}$, fixed. 007
A 6.35 L sample of carbon monoxide is collected at $55^{\circ} \mathrm{C}$ and 0.892 atm . What volume will the gas occupy at 1.05 atm and $20^{\circ} \mathrm{C}$?

1. 1.96 L
2. 5.46 L
3. 4.82 L correct
4. 6.10 L
5. 6.68 L

Explanation:

$P_{1}=0.892 \mathrm{~atm} \quad T_{1}=55^{\circ} \mathrm{C}+273=328 \mathrm{~K}$
$P_{2}=1.05 \mathrm{~atm} \quad T_{2}=20^{\circ} \mathrm{C}+273=293 \mathrm{~K}$
$V_{1}=6.35 \mathrm{~L}$
We can use the combined gas law and solve for V_{2} :

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
V_{2} & =\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}} \\
& =\frac{(6.35 \mathrm{~L})(0.892 \mathrm{~atm})(293 \mathrm{~K})}{(328 \mathrm{~K})(1.05 \mathrm{~atm})} \\
& =4.82 \mathrm{~L}
\end{aligned}
$$

ChemPrin3e T04 66

14:13, general, multiple choice,$<1 \mathrm{~min}$, fixed. 008
Which of the following gases would you predict to have the largest value of the van der Waals coefficient b?

1. $\mathrm{C}_{2} \mathrm{~F}_{2} \mathrm{Cl}_{4}$
2. CO_{2}
3. $\mathrm{C}_{2} \mathrm{~F}_{6}$
4. Cl_{2}

5. $\mathrm{C}_{2} \mathrm{FCl}_{5}$ correct

Explanation:

