This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time.

Msci 09 0305

13:06, general, multiple choice, $> 1 \min$, fixed. 001

What is the bond order in C_2^- ?

1. 1.0

2. 2.0

3. 2.5 **correct**

4.3.0

5. 3.5

Explanation:

Bond order =
$$\frac{\# \operatorname{elec}_{\operatorname{bond}} - \# \operatorname{elec}_{\operatorname{antibond}}}{2}$$
.

The molecule C_2^- contains 9 bonding electrons and four antibonding electrons (include the net negative charge of the molecule). Applying these values to the bond order equation, we get a bond order of 2.5.

Msci~09~0412

13:06, general, multiple choice, $> 1 \min$, fixed. 002

Molecular oxygen and molecular nitrogen are

1. both diamagnetic.

2. oxygen is paramagnetic, nitrogen is diamagnetic. correct

3. both paramagnetic.

4. oxygen is diamagnetic, nitrogen is paramagnetic.

Explanation:

The molecular orbital configurations are For O_2 :

ChemPrin3e T03 58

13:10, general, multiple choice, < 1 min, fixed. 003

Which of the following would have the longest bond?

1. B_2 correct

2. C₂

3. N₂

4. C_2^{2-}

5. N_2^{2-}

Explanation:

In B_2 , the bond order is 1. All others are higher.

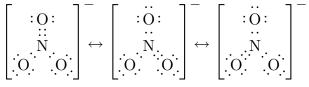
Mlib 03 1161

13:09, general, multiple choice, $> 1 \min$, fixed. 004

Which of the following species possesses a delocalized bond?

1. H₂S

2. NO_3^- correct


3. H₂O

4. NCl₃

5. No molecule given here possesses a delocalized bond.

Explanation:

Only for NO_3^- can resonance structures be drawn.

ChemPrin3e T04 39	
14:08, general, multiple choice, $< 1 \min$, fixed.	14
005	
Ammonium nitrate can decompose according	W
to the equation	la
$\mathrm{NH_4NO_3(s)} \rightarrow \mathrm{N_2O(g)} + 2\mathrm{H_2O(g)}.$	-
How much GAS is produced by decomposition of 160 g of ammonium nitrate at STP?	
1. 44.8 L	
2. 6.00 L	2

3. 22.4 L

4. 134 L **correct**

5. 67.2 L

Explanation:

 $m_{\rm NH_4NO_3} = 160 \text{ g NH}_4 \text{NO}_3$ P = 1 atm $T = 0^{\circ}\text{C} + 273.15 = 273.15 \text{ K}$ For the NH₄NO₃,

For the $nn_4 nO_3$

$$n_{\rm NH_4NO_3} = (160 \text{ g NH}_4\text{NO}_3)$$

 $\times \frac{1 \text{ mol NH}_4\text{NO}_3}{80.0434 \text{ g NH}_4\text{NO}_3}$
 $= 1.99892 \text{ mol NH}_4\text{NO}_3$

The question asks for the number of moles of GAS; *i.e.*, mol of N₂O AND H₂O:

$$n = (1.99892 \text{ mol } \text{NH}_4 \text{NO}_3) \frac{3 \text{ mol gas}}{1 \text{ mol } \text{NH}_4 \text{NO}_3}$$
$$= 5.99675 \text{ mol gas}$$

The ideal gas law is

$$PV = n RT$$

$$V = \frac{n R T}{P}$$

$$= \frac{(5.99675 \text{ mol gas}) (0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}})}{1 \text{ atm}}$$

$$\times (273.15 \text{ K})$$

$$= 134.415 \text{ L gas}$$

ChemPrin3e T04 60 14:10, basic, multiple choice, < 1 min, fixed. 006 Which of the following gases will have the largest root mean square speed at 100°C?

- 1. water
- **2.** argon
- 3. methane correct

4. nitrogen

5. oxygen

Explanation:

$\mathbf{Mlib}\ \mathbf{04}\ \mathbf{1011}$

14:04, general, multiple choice, $> 1 \min$, fixed. 007

A 6.35 L sample of carbon monoxide is collected at 55° C and 0.892 atm. What volume will the gas occupy at 1.05 atm and 20°C?

1. 1.96 L

 $\textbf{2.}\ 5.46\ L$

3. 4.82 L correct

 $\textbf{4.}\ \textbf{6.10}\ \textbf{L}$

5. 6.68 L

Explanation:

 $\begin{array}{ll} P_1 = 0.892 \mbox{ atm } & T_1 = 55^{\circ} \mbox{C} + 273 = 328 \mbox{ K} \\ P_2 = 1.05 \mbox{ atm } & T_2 = 20^{\circ} \mbox{C} + 273 = 293 \mbox{ K} \\ V_1 = 6.35 \mbox{ L} \end{array}$

We can use the combined gas law and solve for V_2 :

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}
V_2 = \frac{P_1 V_1 T_2}{T_1 P_2}
= \frac{(6.35 \text{ L}) (0.892 \text{ atm}) (293 \text{ K})}{(328 \text{ K}) (1.05 \text{ atm})}
= 4.82 \text{ L}$$

ChemPrin3e T04 66

14:13, general, multiple choice, $< 1 \min,$ fixed. $\mathbf{008}$

Which of the following gases would you predict to have the largest value of the van der Waals coefficient b?

1. $C_2F_2Cl_4$

- **2.** CO_2
- **3.** C_2F_6
- 4. Cl_2

5. C_2FCl_5 correct

Explanation: