This print-out should have 6 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

ChemPrin3e 01 02 001 10.0 points

What is the correct order of decreasing frequency?

1. infrared radiation, radio waves, visible light, ultraviolet radiation

2. radio waves, infrared radiation, visible light, ultraviolet radiation

3. visible light, ultraviolet radiation, infrared radiation, radio waves

4. radio waves, visible light, ultraviolet radiation, infrared radiation

5. ultraviolet radiation, visible light, infrared radiation, radio waves **correct**

Explanation:

ultraviolet radiation > visible light > infrared radiation > radio waves

Particle Properties

002 10.0 points

Which phenomenon provides the best evidence that light can have particle properties?

- **1.** Electron diffraction
- 2. Electromagnetic radiation
- 3. X-ray diffraction
- 4. Interference of light in thin films
- 5. Photoelectric effect correct

Explanation:

Interference of light in thin films and electromagnetic radiation are generally used to show the wavelike properties of light. Electron diffraction is used to show the wavelike properties of matter. X-ray diffraction is a result of the wave properties of light.

The photoelectric effect supports the idea that light is quantized, or carries discrete amounts of energy. This is a property of particles manifested by light.

ChemPrin3e T01 09 003 10.0 points

Calculate the wavelength of a motorcycle of mass 275 kg traveling at a speed of 125 km/hr.

1.
$$2.08 \times 10^{-29} \text{ m}$$

2. $2.41 \times 10^{-36} \text{ m}$
3. $1.93 \times 10^{-38} \text{ m}$
4. $6.94 \times 10^{-38} \text{ m correct}$
5. $1.93 \times 10^{-41} \text{ m}$
Explanation:
 $v = 125 \text{ km/h} = 125000 \text{ m/h}$ $m = 275 \text{ kg}$
 $\lambda = \frac{h}{m v}$
 $= \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{(275 \text{ kg}) \left(\frac{125000 \text{ m}}{3600 \text{ s}}\right)}$

$$= 6.93923 \times 10^{-38} \text{ m}$$

OneD Ground State 004 10.0 points

If a particle is in a one-dimensional box and is in its ground state, where would you MOST probably find the particle?

1. at the two ends of the box

- 2. in the center of the box **correct**
- **3.** anywhere in the box
- 4. either side of the center of the box

Explanation:

Msci 05 1403 005 10.0 points In a given atom, what is the maximum number of electrons that can have principal quantum number n = 3? 1.8

2. 18 **correct**

3. 32

4. 10

5. 2

Explanation:

There are 2 electrons in the 3s orbital, 6 electrons in the 3p orbitals, and 10 electrons in the 3d orbitals to give a total of 18 electrons.

Msci 05 1416

006 10.0 points

Can an electron in an atom be in an energy level described by the set of quantum numbers $n = 5, \ell = 3, m_{\ell} = -2?$

1. No, because ℓ must be equal to n-1.

2. No, because *n* cannot be as large as 5.

3. No, because m_{ℓ} must be equal to ± 1 .

4. No, because m_{ℓ} cannot be negative.

5. Yes correct

Explanation:

Since n is 5, the possible values of ℓ are 0, 1, 2, 3, and 4. Since 3 is a possible value, we then consider if m_{ℓ} could be -2 when ℓ is 3. The possible values of m_{ℓ} are +3, +2, +1, 0, -1, -2, and -3 when ℓ is 3, so this combination of quantum numbers is permitted.