This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

LDE Q01 03

001 10.0 points

Which of the following types of electromagnetic radiation has the shortest wavelength? **1.** 3.57×10^{-19} J correct

2.
$$2.74 \times 10^{-19}$$
 J

- **3.** 3.12×10^{-19} J
- **4.** 3.05×10^{-19} J
- 5. 2.83×10^{-19} J

Explanation:

LDE Q01 02

002 10.0 points

Which of the following types of electromagnetic radiation has the shortest wavelength? 1. Infrared

2. Ultraviolet

3. Microwave

- 4. Gamma correct
- 5. Radio

Explanation:

LDE Q01 06 003

10.0 points

Show that the wave nature of particles is negligible for macroscopic objects by calculating the de Broglie wavelength of a 2 g paper airplane thrown at Dr. Laude traveling at $5 \text{ m} \cdot \text{s}^{-1}$.

- **1.** 1.656×10^{-33} m
- **2.** 6.626×10^{-32} m correct
- **3.** 6.037×10^{32} m

4. 1.509×10^{34} m

5. 2.650×10^{-34} m

Explanation:

$$2 g = 2 \times 10^{-3} kg$$

$$\lambda = \frac{h}{mv}$$

$$= \frac{6.626 \times 10^{-34} J \cdot s}{(2 \times 10^{-3} kg) (5 m \cdot s^{-1})}$$

$$= 6.626 \times 10^{-32} m$$

LDE uncertainty calculation 001 004 10.0 points

A proton in the form of a hydrogen ion has a fairly well defined position with an uncertainty of only 10^{-11} m. What would the minimum uncertainty in the proton's velocity be? (A proton has a mass of 1.672×10^{-27} kg)

1. 4,950 m \cdot s⁻¹ **2.** 9,900 m \cdot s⁻¹ **3.** 19, 800 m \cdot s⁻¹ **4.** 3, 150 m \cdot s⁻¹ correct

5. 31. 100 m \cdot s⁻¹

Explanation:

$$\Delta x(m\Delta v) \ge \frac{h}{4\pi}$$
$$\Delta v \ge \frac{h}{4\pi m\Delta x}$$
$$\ge \frac{6.626 \times 10^{-34} \text{ J} \cdot \text{s}}{4\pi (1.672 \times 10^{-27} \text{ kg}) (10^{-11} \text{ m})}$$
$$\ge 3,153 \text{ m} \cdot \text{s}^{-1}$$

LDE quantum rules 005 10.0 points Which of the following sets of quantum numbers are **valid**, i.e. don't violate any boundary conditions?

I) $n = 3, \ell = 2, m_{\ell} = -2, m_s = +\frac{1}{2}$ II) $n = 9, \ell = 5, m_{\ell} = 6, m_s = +\frac{1}{2}$ III) $n = 2, \ell = 1, m_{\ell} = 0, m_s = +1$ IV) $n = 2, \ell = 0, m_{\ell} = 0, m_s = +\frac{1}{2}$	
1. II, III	
2. I, II, IV	
3. IV only	
4. I, III, IV	
5. II only	
6. III only	

7. I, IV correct

8. I only

Explanation:

Set II and III are invalid. For II, $m_{ell} = 6$ is disallowed because $\ell = 5$. For III, $m_s = +1$ is disallowed because m_s may only be $+\frac{1}{2}$ or $-\frac{1}{2}$.

LDE Aufbau, Hund, Pauli 002 006 10.0 points

Consider the electron filling diagram for a ground state atom above. Assume any unwritten orbitals are empty. Which of the following does it violate?

- I) The Aufbau principle
- II) Hund's rule

III) The Pauli exclusion principle

1. III only correct

2. II (only
3. II,	III
4. I, I	I, III
5. I, I	Ι
6. I of	nly
7. I, I	II

Explanation:

The Pauli exclusion principle dictates that a given electron and a given set of quantum numbers have a 1 to 1 relation. The two electrons in first 3p orbital have the same spin and thus the same set of quantum numbers, in violation of the the Pauli exclusion principle.

Msc	ci 05 1412
007	10.0 points
How many electrons	s can be in the $n = 2$ shell?

1. 2

2. 32

3. 18

4.8 correct

Explanation:

LDE classical failure 001 008 10.0 points

Which of the following statement(s) is/are true about the photoelectric effect?

- I) Classical physics failed to explain some of the observed phenomena.
- II) Given light of high enough intensity, electrons can be ejected off any surface.

III) Einstein employed the concept that photons have quantized amounts of energy to explain the effect.

1. I, III correct

2. II, III

3. I only

4. I, II, III

5. I, II

Explanation:

Classical mechanics predicted that light of any wavelength would be able to eject electrons from a metal surface if it was sufficiently intense, which was inconsistent with the observed threshold effect. This threshold effect, the ejection energy, required that light energy was quantized.