
Will Frierson

Research Methods Skill Module:
Simulating Diffusion in a Cell

With Finite Difference Methods

[Getting Started: This skill module requires you to use Mathematica software, which you can find on any
of the computers in the math computer lab (7.122) or the physics computer lab (RLM 7.306). You also
need to download two Mathematica files called “Diffusion Module - FTCS.nb.” and “Diffusion Module -
Crank-Nicolson.nb,” which are on the Research Methods website along with this PDF.]

1 Purpose

In this skill module, you will model the diffusion of chemical X in a biological cell using two
simulation techniques via the finite difference method. In practice, you might do this if running the
experiment is too costly, or too difficult. In this example, we know that two sides of the cell are in
contact with a resovoir of chemical X, and so they always have a constant chemical concentration.
On the other hand, a third side is in contact with an organelle that consumes chemical X. Through
our model, we wish to see if any chemical X remains after exposure to the organelle, and if so, to
what extent.

This module is like a mini-lab in numerical analysis and simulation. The point of it is to expose
you to these ideas, so don’t get bogged down in the details! As you go through this assignment,
you will answer some questions along the way.

2 Background on the Finite Difference Method

2.1 Discretization

The finite difference method is a simulation technique which discretizes the region on which you
would examine the dynamics of a certain variable. In our case, we are looking at the dynamics of
the chemical X concentration within the region of a biological cell as time varies. For simplicity,
we assume the cell is two dimensional, and approximate it as a square.

Figure 1: Discretization Example – A circle can be discretized by the five vertices of a pentagon placed at the
circle’s center.

We discretize our biological cell with tiny squares of size, ∆x, and call this layout our grid. See Fig.
2. In addition, we discretize time, and define a fundamental time unit, ∆t. Since we are trying to

1

model diffusion, we must impose some rule set on our grid, which relays information about chemical
X concentrations between time step n and n+ 1.

(a) Actual Cell (b) Square Approximation of
Cell

(c) Discretization of
Square Approximation

Figure 2: Steps in Modeling

2.2 Diffusion Equation

We can find this rule set from the diffusion equation:

∂u

∂t
= D∆u, (1)

where D is the diffusion constant, ∆ is the Laplacian defined by,

∆ =
∂2

∂x2
+

∂2

∂y2
, (2)

and u is the chemical X concentration. The diffusion equation is a well known and understood partial
differential equation (PDE). The equations that describe light, Maxwell’s Equations, are also a set
of PDEs, as is the wave equation, which describes the behavior of a vibrating string. As this module
will show you, PDEs describe a huge amount of mathematical and physical information in a few
short equations. How do we go about extracting our discrete rules from the diffusion equation to
apply to our grid? The answer lies with Taylor polynomial approximations of functions.

2

2.3 Taylor Polynomials and Taylor Series

2.3.1 Taylor Series

Before we begin talking about Taylor polynomials, we will talk about the Taylor Series representa-
tion of a function. In semi-rigorous mathematical terms, if a function f(x) is infinitely differentiable
in a neighborhood about a fixed point x0 in the domain of f , then f can be represented by an infinite
sum of polynomials, which are weighted in proportion to the derivatives of f . Although neighbor-
hood has a very precise meaning, for our purposes we shall take it to mean “very close”: if x is in
a neighborhood of x0, then x is “very close” to x0. In symbols, if x is within a neighborhood of x0,
then,

f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n, (3)

where f (n)(x0) means the nth derivative of f evaluated at x0. In short, a Taylor series rep-
resentation says that a function looks like a polynomial if you “zoom in” about a
neighborhood of a point.

To simplify our notation, we recall that our grid has a fundamental spacial step size, ∆x. Let’s
rewrite Eq. 3 in terms of ∆x. We fix x such that x = x0 + ∆x, so that ∆x = x− x0. Hence, Eq. 3
is now,

f(x) =
∞∑

n=0

f (n)(x0)
n!

(∆x)n. (4)

Lastly, since we assume x is in a neighborhood of x0, then x is very close to x0, and so ∆x is
very small. For example, ∆x is on the order of 1

20th of the length of the biological cell, which is
0.1-10 µm.

2.3.2 Taylor Polynomial

The fundamental technique for finite difference calculations comes from Taylor Polynomials. A
Taylor Polynomial is a truncation of the Taylor Series representation of a function, i.e., instead of
letting n reach ∞, we have a finite sum in Eq. 4. Practically, this means that we approximate a
function f by a finite sum of polynomials, weighted by its derivatives. We say a Taylor Polynomial
has m-degrees, if the highest power of ∆x is m, e.g.,

f(x) ≈
m∑

n=0

f (n)(x0)
n!

(∆x)n

≈ f(x0) +
∆x
1!

df

dx
(x0) + · · ·+ (∆x)m

m!
dmf

dxm
(x0). (5)

The higher the value of m, the more accurate our approximation of f . In this module, we will
only consider Taylor Polynomials of degrees 1 and 2. An m = 1 Taylor polynomial is called a
linearization of f , and m = 2 a quadratic approximation of f .

2.3.3 Truncation Error

Since a Taylor Polynomial is only a truncation of a Taylor series, if we add the left over terms from
the truncation, we have our Taylor Series again. These left over terms are called the truncation
error, Rn:

3

f(x) =
m∑

n=0

f (n)(x0)
n!

(∆x)n +Rn (6)

Note that we now have equality in Eq. 6 because of Rn.
It turns out that Rn is very useful for our simulations. Taylor’s Theorem tells us the following

about Rn:

Rn =
(∆x)m+1

(m+ 1)!
f (m+1)(ξm+1), (7)

where ξm+1 is an unknown number such that, x0 < ξm+1 < x.

Example

Let’s do a quick example. One trick that you will use frequently in this module is the following,

x = x0 + (x− x0) = x0 + ∆x. (8)

So,

f(x) = f(x0 + ∆x) = f(x0) + ∆x
df

dx
(x0) +

(∆x)2

2!
d2f

dx2
(ξ2), (9)

where the last term is the truncation error, R1. Since we are assuming ∆x is small, we know ξ2 is
bounded in a small interval. Hence, we can approximate R1 with the already known x0:

R1 ≈
(∆x)2

2!
d2f

dx2
(x0). (10)

Lastly, we say that the truncation error is O(∆x)2, which is read as “order delta-x squared,”
meaning,

|R1| ≤ C(∆x)2, (11)

where C is some constant.
What does all this mean? Well, this means that our error in linearizing f is proportional to

(∆x)2. So, for small ∆x, linearization has very little error, and so is very accurate! As
you will show in the following problem set, a linearization of f does not have the same truncation
error as a non-centered difference approximation of a derivative.

2.3.4 Problems

Using the definition of a derivative,

df

dx
(x0) = lim

h→0

f(x0 + h)− f(x0)
h

, (12)

1) Derive the truncation error of the forward difference approximation of df
dx :

df

dx
(x0) ≈ f(x0 + ∆x)− f(x0)

∆x
. (13)

4

2) Derive the truncation error of the backward difference approximation of df
dx :

df

dx
(x0) ≈ f(x0 −∆x)− f(x0)

−∆x
. (14)

3) Derive the truncation error of the centered difference approximation of df
dx :

df

dx
(x0) ≈ f(x0 + ∆x)− f(x0 −∆x)

2∆x
. (15)

4) Derive the the centered difference approximation for the second derivative, d2f
dx2 :

d2f

dx2
(x0) ≈ f(x0 + ∆x)− 2f(x0) + f(x0 −∆x)

(∆x)2
. (16)

5) Derive the truncation error for the centered difference second derivative, d2f
dx2 .

2.4 Finite Difference Approximations for Partial Derivatives

If you recall Eq. 1, we are dealing with partial derivatives. Lucky for us, we can use the results
and your answers from the latter section. Instead of just x0, we use a fixed vector, (x0, y0), and we
apply, e.g., an x-derivative only with the x-components :

∂u

∂x
(x0, y0, t0) ≈ f(x0 + ∆x, y0, t0)− f(x0, y0, t0)

∆x
, (17)

∂u

∂y
(x0, y0, t0) ≈ f(x0, y0 + ∆y, t0)− f(x0, y0, t0)

∆y
, (18)

etc.
Finally, we treat time derivatives the small way as spacial derivatives:

∂u

∂t
(x0, y0, t0) ≈ f(x0, y0, t0 + ∆t)− f(x0, y0, t0)

∆t
, (19)

etc.

2.4.1 Problems

6) Derive the difference approximation for the Laplacian from Eq. 2 using a 2D, spatial-temporal
function f = f(x, y, t).

3 Applying the Finite Difference Method for the Diffusion Equa-
tion

Since we are dealing with many derivatives, it seems like it would be easy to lose track of what
is going on. So to prevent confusion, we use grid notation. In grid notation, we view a function
evaulation on the grid, such that x = ∆x · i, y = ∆y · j, and t = ∆t · n. We shorten notation by
removing all the ∆’s:

u(x, y, t) = un
i,j . (20)

5

Hence, the forward difference approximation for the time derivative, e.g., is represented as,

∂u

∂t
≈
un+1

i,j − un
i,j

∆t
, (21)

and the other derivatives are written in the same manner.

3.0.2 Problems

Take a look again at the diffusion equation, Eq. 1. From your answers in previous problems and
using grid notation,

7) Use a forward difference in time, and the Laplacian difference approximation to discretize the
diffusion equation. Assume ∆x = ∆y, and solve for un+1

i,j .

We call this method a Forward-Time Central-Space (FTCS) scheme. It is also known as an explicit
method, since we explicitly solve for the next time step, un+1

i,j .
From your result in problem (7), you should realize that the boundary of the grid cannot

be calculated. So, we also have to take into account boundary conditions. Recall that we are
simulating two sides of the cell as having a constant chemical X concentration, and one side of the
cell exposed to an organelle which depletes chemical X. To achieve this, we set the desired constant
concentrations at the two boundaries,

u |boundary 1= 2 concentration units, (22)

and

u |boundary 2= 0.5 concentration units. (23)

To properly model the organelle, we would have to include some sort of chemical reaction equation,
known as a reaction-diffusion equation. These can be tricky to setup, and so I have made the third
boundary negative, which effectively “eats” away at the chemical X concentration.

4 FTCS Diffusion Simulation

Open up the attached Mathematica file called “Diffusion Module - FTCS.nb.” There are three main
code areas, which are separated by the blue brackets on the far right. Execute the first two cells,
and you should see the following 3D plot as the output for the second cell:

6

Figure 3: Distribution of Chemical X throughout Square Cell at Time = 0 s

This plot shows the distribution of chemical X in the square cell. Once you are ready, execute the
third cell, and you should see the simulated diffusion and destruction of chemical X. To stop an
execution, press Alt and the period key.

4.0.3 Problems

With the default values, ∆t is set at 0.045 s. Note that the following questions require you to
change the values of ∆t.

8) Describe what you see when you run the simulation (i.e., execute the third cell) with the
following ∆t values: 0.045 s, 0.05 s, and 0.055 s. Do the simulations appear to make physical
sense, i.e., do they seem reasonable?

One of these ∆t values should have a very “interesting” simulation! A certain technique called
Von Neumann Analysis shows that this interesting simulation comes from a special inequality called
the stability condition:

σ =
D∆t

(∆x)2
≤ 1

4
, (24)

9) The FTCS simulation uses D = 1
80 and ∆x = 1

20 . Calculate the stability number, σ, for the
∆t values in problem (8). How do these values relate to the stability condition?

5 Crank-Nicolson Diffusion Simulation

Open up the attached Mathematica file called “Diffusion Module - Crank-Nicolson.nb.” With this
code, you will examine the output of the Crank-Nicolson method, which is described later. There
are again three code areas. Execute the first two code areas, and wait for the 3D plot to show up
as before. Note that this method takes about a minute to initialize. Now pick any time step, ∆t,
and execute the third code area. Pick a few more time steps, and rerun the simulation by executing
the third area.

5.0.4 Problems

10) Describe the simulation for any time step you choose.

11) Take a screenshot of the final distribution of chemical X.

7

In problem (7), you derived the FTCS finite difference scheme for the diffusion equation. You
also should have found that all spatial derivatives occurred on the nth time step. Two researchers,
Crank and Nicolson, discovered that if you average each spatial derivative with adjacent time steps,
e.g.,

d2f

dx2
≈ 1

2

(
un

i+1,j − 2un
i,j + un

i−1,j

(∆x)2
+
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

(∆x)2

)
, (25)

then the stabiltiy condition is always satisfied, i.e., the simulation is stable for all time steps.
In addition, the truncation error is O(∆x)2 + O(∆t)2, which is still very small. This method is
called the Crank-Nicolson scheme. Also, this is known as an implicit method, because finding the
next solution in time requires solving a linear system (i.e., solving a matrix).

12) In a few paragraphs, summarize all that you have done in this module, and compare and
contrast the FTCS and Crank-Nicolson methods.

6 References

1. Haberman, Richard. Applied Partial Differential Equations. 4th. Upper Saddle River: Pear-
son Education Inc., 2004. Print.

8

