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Originality in the Arts and Sciences: Lecture 2:   
Probability and Statistics 

 
Let’s face it.  Statistics has a really bad reputation.  Why? 

1. It is boring. 
2. It doesn’t make a lot of sense. 

 
Actually, the reason statistics is boring is that (as with everything else you think is boring) the problem is you 
don’t really understand it, at least not on a conscious level.  But in fact, all of you use statistics constantly in 
your evaluation of the world around you, from deciding whether it is worth the risk to ask someone on a date 
(do people still date?) to deciding what courses to take to get into medical school.  Anytime you make a 
decision, you are applying statistics in some form – you probably just don’t know it. 
 
What we will do the next two days is look at why statistics is especially important to the experimental scientist 
and look at how we can take the subject from that rather hazy qualitative state in your head to a more 
quantitative playing field that everyone can understand. 
 
But first, and interesting example of statistics in action: 
 

The Case For (Against?) Second Hand Smoke. 
 
Now we all know that second hand smoke is bad for us – worse than that, it kills.  And how do we know this?  
Because we heard it on the news, from some scientists who said that second hand smoke causes cancer. 
 
But how did those scientists come to that conclusion?  Did they put a rat in a room with 1000 burning cigarettes 
to see whether the rat got a spot on its lung?  No. And why not?  Because that experiment on a single rat 
wouldn’t say with certainty that the rat got that spot from the smoke.  But even if you used 1000 rats, people 
would say, who cares about rats, what about people? 
 
Well, there are very few people who would sit in a room with 1000 cigarettes burning (unless they were 
smoking too which is the real reason people start to smoke) so instead, scientists had to go out and create a 
study with a bunch of people who hung around second hand smoke whether they wanted to or not (like spouses 
and children of heavy smokers.)  The scientists also had to find a control group of spouses and children of 
people who didn’t.  Then after several years the scientists looked to see whether second-hand smokers were 
more likely to get some terrible disease than the non-second-hand smokers.  And guess what?  They did – well 
sort of.  As you will see, it is impossible to be 100% CONFIDENT, at least according to the statistics.  But you 
don’t get your research funded by saying you aren’t sure, so you say YES, second-hand smoke causes cancer. 
 
In fact, you did a t-test and your statistics told you could only be about 90% CONFIDENT.  In other words, for 
the same data, 90 times out of 100 it would be true that second-hand smoke caused cancer, but 10 times out of 
100, second-hand smoke wouldn’t cause cancer.  Well, who decides whether being 90% CONFIDENT means 
SECOND HAND SMOKE CAUSES CANCER?  Simple.  Whoever is the boss decides.  And who is the boss 
for the scientists who presented the study?  Well, if you are trying to prove cigarette smoking causes cancer, and 
you want to please the NIH who gave you the money, you go on TV and say  SECOND HAND SMOKE 
CAUSES CANCER.  But if you work for a cigarette manufacturer, you go on TV and say THE RESULTS 
ARE INCONCLUSIVE.  Who’s right?  You both are. 
 
So you see why the general population hates statistics.  But this story is pretty interesting, and it is an excellent 
reason to know something about statistics the next time you listen to someone argue a point you disagree with.  
Then maybe you can stand up and say, “Excuse me, what confidence limit did you use in that study?” 
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Probability 
 

As a foundation for an understanding of concepts such as sampling theory and signal to noise measurement in 
data collection, it is necessary to briefly discuss PROBABILITY.  Probability is he tendency of an event to take 
place.  For some event x, there is an event space with n outcomes for which x occurs m times.  The probability 
of x occurring is 
 

P(x) = m/n, 0 < P <1   eq 1 
 

Any probability for which all outcomes are known is objective probability.  This is typically the type of 
probability with which we most often work.  A plot of probability vs. m/n  is a probability distribution which 
can be discrete, as with rolling a die (1,2,3,4,5,6), or continuous, as in asking how tall people are.  We deal with 
distributions most often by describing a probability density function: 
 

P(xa < x < xb) =
f (x)dx

xa

xb

∫

f (x)dx
−∞

∞

∫
   eq 2 

Where f(x) is the probability density function for x. 
 
Example.  Consider the shoe sizes of all the students at UT Austin – the range will be something like 3 to 16 
inches.  Assume that any size in this range is possible (a continuous function) and you get a distribution that  
 

looks like the one above  
If this distribution is given by a density function then the probability of finding a student with shoe size between 
10 and 12 inches is given by the following area under the curve: 
 

 

3 16
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So what are some of the density functions we come across as scientists?  Consider random variables, i.e., those 
results of experiments that are affected by chance.  Examples include: 

1. Binomial random variable.  This type of distribution is found when chances are discrete, for example 
when flipping a coin which can give a result which is either heads or tails. 

2. Geometric random variable. 
3. Poisson random variable.  (The observation of discrete events in a continuous interval.) 
4. Uniform and exponential random variable. 
5. Normal random variable (Gaussian distribution.) 

 
The Normal Random Variable 

 
Case 5 above is by far the most commonly studied because it describes the distribution of events in a continuous 
interval.  The density function for a normal distribution is 
 

f (x) =
1

(2πσ 2)1/ 2 exp −(x − μ)2

2σ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,−∞ < x < ∞     eq 3 

 
With two parameters 

Mean =  μ = xf (x)dx
−∞

∞

∫       eq 4 

 

Variance = σ 2 = (x − μ)2

−∞

∞

∫ f (x)dx      eq 5 

Or when written as summations 
 

μ = xi /N
i=1

N

∑                                                     eq 6 

σ 2 =
1
N

xi − μ( )
i=1

N

∑
2

                                           eq 7 

With N=number of elements considered. 
 

Standard normal variate. 
 

An immediate concern is how to integrate the density function above every time we have a new collection of 
data.  Since every different distribution has a different mean and standard deviation, this could be a problem.  
But what if we had some standard condition, like assuming that the mean, μ, is at 0 and the standard deviation, 

3 10 12 16
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σ, is 1.  As you can see from looking at the function, a change in mean merely shifts the position on the curve 
and a change in standard deviation merely expands or contracts the distribution by a constant.  THE SHAPE OF 
THE CURVE DOES NOT CHANGE.  Thus you can use a single table of data (next page)  for calculations 
involving a Gaussian distribution.  To do this, use the following transformation: 

x = N μ,σ 2( )= N(0,1)

Zi = xi − μ( )/σ
then

f (Z) =
1
2π

e−Z 2 / 2

                                  eq 8 

We see that this new function for the Gaussian distribution, f(Z) is the same as equation with the exception that 
we have applied it to the case of μ=0 and σ=1. 
 

 
 

POPULATIONS AND SAMPLES. 
 

We could, of course, find the distribution of shoe sizes at UT by lining everyone up at a Payless Shoes and 
getting their measurement.  Then we could calculate a true mean, μ, and a true standard deviation, σ. 
 
You can imagine that chances of getting all the students at UT to show up at a Payless Shoes when we want is 
pretty unlikely.  So what do we do?  I guess we could get some of the students to show up, maybe by offering 
pizza.  Then we could get a SAMPLING of the distribution of shoe sizes, with and average, χ, and a standard 
deviation, s 
 

x =
xi

ni=1

n

∑    eq 9 

s2 =
xi − x( )2

n −1( )i=1

n

∑   eq 10 

 
But now the big question… How much do χ and s differ from μ and σ?  In other words, how much do the 
sampled values differ from the true value for the population?   
 
It  turns out this question can be answered by examining the distribution of experimental data.  Two common 
sense thoughts in answering the question are that the certainty that χ and s approximate μ and σ increases (the 
error range decreases) when: 
 

1. The number of samples we measure gets larger  
AND 

2. The distribution of s is narrow 
 
So here in equation 11 is the BIG equation.  Described mathematically, for a sample, n, of a population, N, the 
range of uncertainty is 
 

x − Z s
n

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≤ μ ≤ x + Z s

n
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟    eq 11 
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Here, the uncertainty, or error range, between the sampled average, χ, and the true mean, μ, to achieve a certain 
confidence is  

Z s
n

 

Note this equation satisfies our two common sense ideas about how the certainty of the sampling improves as s 
decreases and n increases. 
 
What is Z in equation 11?  It is the distance χ is from μ, given in units of standard deviation.  Associated with Z 
is a degree of confidence (confidence level) which corresponds to the area under the Gaussian curve in the table 
on the previous page. 
 
 

TABLE 1 
Z (number of standard deviations) Confidence level (area under the 

Gaussian curve) 
1.64 90% 
1.96 95% 
2.58 99% 

 
In interpreting the table, we would say, for example, that there is a 95% confidence (95 times out of 100) that 
the true mean, μ, lies within an interval of about +/- two (1.96) standard deviations of χ. 
 
Now remember, the values in the table are for a STANDARD NORMAL VARIATE.  You have to use eq 8 to 
scale to the range of uncertainty for your particular data. 
 

SMALL SAMPLING SIZES 
 

We can use Table 1 when we have a large enough sample size so that s approximates σ.  But some times this 
doesn’t happen if we don’t collect enough data.  For example, what do you do if you don’t want to do 100 
titrations or if you can’t get 100 people to give you their shoe size? 
 
When the number of samples is small, we can no longer use Z values in finding the area under the curve for our 
calculations.  Rather, we substitute a t value to calculate confidence limits. 
 

x − t s
n

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≤ μ ≤ x + t s

n
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟    eq 12 

 
Where t is the number of degrees of freedom for a particular experiment.  There are tables that give you this t 
value for a particular confidence level.  For example, for a 95% confidence level: 
 
Table 2 

Degrees of freedom 95% confidence level 
1 12.71 
2 4.30 
5 2.57 
10 2.23 
30 2.04 
100 1.98 
∝ 1.96 
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Notice that as the size of our sample approaches infinity, our sampled distribution, s, approaches σ, and t 
approaches Z.  In practice, this use of t values expands the width of the interval within which we can assume a 
certain level of confidence.  This makes sense, because if we don’t have enough data to know what the true 
distribution looks like, we are less confident and consequently need a larger error window to speak with the 
same confidence. 
 
A final point, remember that when working with small data sets, you use (n-1) instead of n, in calculating 
equation 12. 
 
Now an  example: 
 
Example:  A chemist obtained the following data for the alcohol content of a sample of blood; percent ethanol :  
0.084, 0.089, and 0.079.  Calculate the 95% confidence limit for the mean assuming (a) no additional 
knowledge about the precision of the method and (b) that on the basis of previous experiences s  σ = 0.006% 
ethanol. 
 

(a)    

xi = 0.084 + 0.089 + 0.079 = 0.252∑
xi

2 = 0.007056 + 0.007921+ 0.006241= 0.021218∑

s =
0.021218 − 0.252( )2 / 3

3−1
= 0.005

 

Here, χ = 0.252/3 = 0.084.  Table 2 indicates that t=±4.30 for two degrees of freedom and 95% confidence.  
Thus, 

   95%C.L.= x ±
ts
n

= 0.084 ±
4.3× 0.005

3
= 0.084 ± 0.012 

(b)  Because a good value of σ is available, 

   95%C.L.= x ±
zσ

n
= 0.084 ±

1.96 × 0.006
3

= 0.084 ± 0.007 

Note that a sure knowledge of σ decreased the confidence interval by almost half. 
 

ARE THINGS THE SAME? 
 

Often in experimental science, the question is raised as to whether two things are the same.  In particular, if we 
have two distributions of data we can apply statistical test to answer questions like: 
Are two means the same? Use the t test. 
Are two variances the same? Use the F test. 
Is a piece of data bad? Use the Q test. 
 
 

Significance and the Null Hypothesis 
 

Random error in systems that are free of systematic error can be tested to determine whether differences 
between two results are SIGNIFICANT.  Significance tests are used to evaluate whether the differences are due 
to RANDOM variation or whether they are due to some kind of SYSTEMATIC difference (systematic or 
determinate error.)  To perform a significance test we test the truth of a NULL HYPOTHESIS.  The null 
hypothesis assumes that the analytical method IS NOT subject to systematic error.  In other words there is no 
difference between the two data sets that cannot be attributed to random fluctuation.  Assuming the null 
hypothesis is true allows a calculation of the probability that the difference between sample statistics (x and s) 



 7

and the true value (μ, σ) are from random error.  The lower the probability that the observed difference occurs 
by chance, the less likely the null hypothesis is true.  Typical probabilities used in rejecting the null hypothesis 
are 0.05 (5% significance or 95% confidence) and 0.01 (1% significance or 99% confidence).  At the 5% level 
when we reject the null hypothesis, it is actually true 1 time in 20.  At the 1 % level, it is actually true 1 time in 
100.  Thus we never prove the null hypothesis, we can only say that it has not been demonstrated to be false. 
 
 

Implementing the null hypothesis: 
1. Calculate texp by rearranging equation 12 and substituting in the appropriate data 

to obtain:     
μ = x ± ts / n( )
rearranges to t exp = x − μ( ) n[ ]/s

       eq 13 

2. A ttable value is then obtained from the appropriate distribution table for a given 
test (t, F, Q for example), a given significance (1%, 5% for example) and a given 
number of degrees of freedom (v). 

3. texp and ttable are compared: 
 
If texp> ttable then the null hypothesis is rejected and there is no evidence of 
systematic error: i.e., there is difference between the data sets which is not 
random. 
 
If texp< ttable then the null hypothesis is not disproved and there is no evidence of 
systematic error; i.e., we can assume the data sets are the same. 

 
 

Example of the Null Hypothesis in Action 
 

A standard reference sample (from the NIST) contains 38.9% Hg.  Three measurements 
on a previously calibrated spectrometer yield values of 38.9%, 37.4% and 37.1%.  Is 
there systematic error?  In other words, is the instrument broken? 
 
Perform the three steps in the box: 

1. Calculate x = 37.8% and s = 0.964% 
2. From tables for a t test distribution, with n = 2 and a significance of 0.05 (5%0, 

ttable = 4.3 
3. ttable>texp so there is no evidence of systematic error.  In other words, the 

instrument is not broken.  The variations, 95 times out of 100, would be due to 
random fluctuation. 

 
 

Comparison of Distributions 
  
Now let’s apply the null hypothesis to some quantitative statistical measures for evaluating the degree of 
sameness—tests like the t-test, the f-test, the x2-test, Q-test, and the correlation coefficient.  Each of these 
methods are based upon relatively simple functions, so the math involved and the procedure to implement them 
is trivial.  For example, the first four are just variations on applications of the null hypothesis.  The greater 
challenge is the ability to know when to apply the correct test. We will look at examples of the t and Q test 
which have a statistical foundation, and also the correlation function, which as commonly applied, does not.  
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Statistics test example 1: The student’s t-test. 
 

You will use the t-test when you want to know whether two distributions have the same mean.  This is the most 
commonly used of the statistical test.  It is applied in three steps: 
 

1. First, estimate the standard error of the difference in the two means from a pooled variance. 

sD =
xi − x1( )2

1
∑
N1 + N 2 + 2

1
N1

+
1
N 2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1/ 2

    eq 14 

 
With N1 and N2 the number of elements in population 1 and 2, x1 and x2 the means of the two populations. 

 
2. Calculate texp in order to apply the null hypothesis: 

 
t exp = x1 − x2( )/sD  

 
      3.   Finally, we determined the significance of t for a pooled distribution of N1+N2-2                  
            degrees of freedom, v. (P=significance, A=confidence) 
 

P =1− A =1−
1

υ1/ 2β
1+

x 2

υ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−t

t

∫
υ +1( )/ 2

dx    eq 15 

where β is the Beta function 

β = t υ / 2( )−1[ ] 1− t( )−1/ 2 dt
0

1

∫  

            
 
Yikes.  How do you calculate that integral?  Fortunately, there are tables of these values, for a particular 
confidence or significance, and for a specific number of degrees of freedom. 
 
              A few student t test table values for solution of the integral in eq 15. 
 
  

 Sign.=.50 Sign.=.10 Sign.=.05 Sign.=.01 
v Conf.=5% Conf.=10% Conf.=95% Conf.=99% 
1 1.00 6.31 12.71 63.7 
4 .74 2.13 2.80 4.60 
7 .71 1.9 2.37 3.50 
20 .69 1.72 2.09 2.84 
∞ .67 1.65 1.96 2.58 
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Example of t-Test 
 

14C02 is often used as a tracer for plant metabolism.  You feed the radioactive 14C02 to the 
plant, let the plant use it to produce  metabolic products, and then apply an analytical 
technique that measures radioactivity to determine whether a particular compound 
isolated from the plant has incorporated the labeled 14C02. 
In one test a compound isolated from the plant gives radioactivity counts of 28, 32, 27, 39 
and 40 counts/minute.  A blank run of unlabeled C02 yields background counts of 28, 21, 
28 and 20 counts/minute.  (Remember, there are cosmic rays flying through the air create 
this noisy background.)  Can we be confident that the compound has incorporated the 
labeled 14C02?  Consider for both 95% and 99% confidence levels. 
 

Calculate : x1 = 33.2,x2 = 24.2,sD = 3.6

t exp =
33.2 − 24.2

3.6
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 2.5

 

Now look at the tables for the case of n=7 degrees of freedom. 
     For 95% confidence, ttable=2.37, so texp>ttable 
     For 99% confidence, ttable=3.70, so texp<ttable 
 
Thus we can say with 95% confidence that the means are different and that there is 
labeled 14C02 in the extracted compound.  But we cannot say this with 99% confidence!! 
 
 
Statistics Test Example 2:  The Q-Test for Rejecting Bad Data 

 
Often we encounter data which appears to be SIGNIFICANTLY different from the rest of the data set due to 
some type of systematic error.  We can evaluate statistically using the null hypothesis whether we have any 
statistical validity in throwing out data by using the Q test. 
 
 The test is simple to implement: 
 

1. Line up an array of data. 
2. Calculate the range for the data (the difference between the largest and smallest value in the 

array). 
3. Calculate the gap (the difference between the questionable data and its nearest neighbor. 
4. Calculate Qexp = gap/range. 
5. Compare to Qtable. 
6. Apply the null hypothesis (throw out data if Qexp>Qtable). 

 
Partial Q table 
No. of 
data 

10% significance 
90% confidence 

5% significance 
95% confidence 

1% significance 
99% confidence 

3 0.94 .97 .99 
4 .76 .83 .93 
5 .64 .71 .82 
6 .56 .63 .74 
7 .51 .57 .68 
8 .47 .53 .63 
9 .44 .49 .60 
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Example of Q Test: 

 
You’ve received tests averages in my class of 77, 85, 88, 89, and 93.  You come in to 
argue that the 77 is an aberration and should be thrown out when I assign a grade.  Do 
you have a statistical leg to stand on? 
 
Calculate:     Range=16     Gap=8     -Qexp=8/16=0.5 
 
Qtable= from 0.64 (at 10% significance) up to 0.82 (99%) for 5 data points.  In each case, 
Qexp<Qtable which means I must keep the score. 
 

LINEAR CORRELATION 
 

How often do you use the word CORRELATE?  Actually it is a term we throw around all the time when we 
want to act like we know what we are talking about.  But what is its mathematical meaning?  There are several, 
but to most of you it is that r button on your calculator.  It has to do with how well a pair of quantities (xi, yi), 
I=1,2,…,N are associated.  You know that: 
 

r=1 means there is a positive correlation between x and y 
r=-1 means there is a negative correlation between x and y 
r=0 means there is no correlation between x and y 

 
But how is the calculation done?  Ways to calculate the correlation coefficient, r, are numerous, but often used 
is the Pearson coefficient: 

r =
xi − x( ) yi − y( )∑

xi − x( )2

i
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

yi − y( )2

i
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2     eq 16 

Example of Correlation Coefficient calculation 
 

You are trying to match up the spectrum of an unknown compound with about a million known spectra stored 
in a spectral library on a computer.  You need to give the computer a way to do the calculation.  The correlation 
coefficient is one possibility, because when there is a good match of the two spectra, r should approach2. 
 Mass Library Intensity Unknown Intensity 
 28   24   17 
 29   17   14 
 43   97   100 
 57   100   99 
 58   3   0 
 75   17   8  
 101   16   17 
 103   5   0 
 
From eq 18 
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x = 34.87, y = 31.87

xi − x( ) yi − y( )= 1135∑ 9

xi − x( )2∑( )1/ 2
= 101.8

yi − y( )2∑( )1/ 2
= 111.9

r = 11359 /(101.8)(111.9) = 0.997

 

 
This number indicates a strong degree of correlation between the two spectra and consequently you might be 
correct in assuming the unknown is identified as the library spectrum. 
BUT 
Notice that there is NO statistical validity to the degree of correlation between the correlation.  (In other words, 
there is no standard deviation used in the calculation of eq 18.)  Why does this matter?  Well, there are plenty of 
ways that skew the data to obtain an artificially large r value.  You will do this in your homework. 
 
In fact, there are better ways to incorporate standard deviation into the uncertainty associated with r, but most 
people assume s=1 just to make the calculation easier (for example, your calculator probably calculates r with 
the eq 18 assuming x=1.)  So the next time you are in a class with a professor throwing around r = 0.99995 
values and saying there is a good correlation, ask about the statistics. 


